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Abstract—With the advances of embedded GPUs’ program-
ming models like GLES and OpenCL, the mobile processor has
gained more parallel computing capability, which enables real-
time image processing on portable devices. GLES is an excellent
option to implement high-performance image processing on
embedded GPUs due to its low hardware overhead. However,
most GLES studies only focus on porting specific algorithms to
embedded GPUs without a general optimization guide. In order
to address the pending problems, this paper presents effective
performance optimization chains to guide the optimization of
image processing algorithms by using GLES. The image process-
ing algorithms can be divided into three modes including data-
independent, data-sharing and data-related according to their
memory access and calculation characteristics. Based on this
classification, our optimization chains contain four optimization
directions. 1) Optimizing access to off-chip memory for the
memory-bound data-independent algorithm; 2) Exploiting data
locality by utilizing shared memory and cache for the data-
sharing algorithm; 3) Redesigning the algorithm to optimize the
sharing of computational results between threads for the data-
related algorithm; 4) Making full use of computation resource
for the above three algorithms. Based on these optimization
chains, we design an embedded GPU accelerated image process-
ing library, EgpuIP. To evaluate specific optimization methods
and performance improvements, we employ histogram equaliza-
tion, Gaussian pyramid and integral filter as the representative
algorithm from EgpuIP and adequately optimize them guided
by the proposed optimization chains. Compared to the OpenCV,
experiments show that the three algorithms in EgpuIP provide
up to 19×, 88×, and 3× speedup respectively.

Index Terms—Embedded GPU, Image Processing, Optimiza-
tion Chain, Parallel Strategies

I. INTRODUCTION

Recently, more and more scientists have adopted GPUs

as computing accelerators due to their increasing comput-

ing power and programmability [1]. GPUs applied with

mainstream programming models such as OpenCL [2] and

CUDA [3] have provided significant speedup on a wide range

of computer vision algorithms. However, this success has

mostly been confined to desktop applications because most

of these APIs are unavailable on mobile devices. With the

widespread use of mobile devices, it is becoming increasingly

important to implement real-time image processing on low-

power devices, forcing us to use the Open Graphics Library

‡Corresponding authors.

for Embedded Systems (GLES) [4]. Nowadays, GLES al-

lows general-purpose computing with compute shader [5].

Compute shader has a dedicated single-stage pipeline that

executes independently of the rest of the graphics pipeline,

which reduces the hardware overhead.

Most current mainstream open-source computer vision li-

braries do not support GLES due to its limitation of only

being applied on portable devices. Because of the wide

variety of image processing algorithms, GLES-related studies

mainly address the porting of specific algorithms on em-

bedded GPUs without providing generalized guidelines for

optimizing extensive algorithms. Therefore, it is of great

practical importance to propose an optimization strategy for

image processing algorithms by analyzing and summarizing

the essential features of image algorithms.

According to the memory access and calculation character-

istics of image processing algorithms, we can divide them into

data-independent, data-sharing, and data-related algorithms.

For each of the three types, we propose off-chip memory

access, data locality, communication and computation opti-

mization chain separately. Based on these optimization chains,

we design a real-time image processing algorithm library

using comepute shader technique called EgpuIP for embedded

GPUs. EgpuIP includes real-time implements of resizing,

filtering, transposing, and sharpening, which are commonly

used in deep learning image preprocessing pipelines. It is

of practical significance to optimize these algorithms on

embedded GPU.

To verify the effectiveness of the performance optimization

chains, we employ histogram equalization, Gaussian pyramid,

and integral filter as the representative algorithms from Eg-

puIP. We reduce the algorithm’s off-chip memory bandwidth

consumption through histogram localization for the data-

independent histogram equalization algorithm. For the data-

sharing Gaussian pyramid algorithm, we split the algorithm

by row and column, respectively, and use shared memory to

improve the reuse rate of on-chip hardware resources when

filtering the image in the row direction. For the data-related

integral filter algorithm, in addition to the methods mentioned

above, this paper uses the three-stage parallel prefix-sum

algorithm to optimize the sharing of computational results

between threads and hence reduce the number of instructions.

Experiments show that the three algorithms achieve 6.1×,
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29.9×, and 2.2× performance speedups on average compared

to their respective OpenCV version when processing images

range from 512× 512 to 3840× 2160.

Our key contributions are highlighted as follows:

• We propose practical performance optimization chains to

address the lack of general optimization guidelines for

porting image processing algorithms to embedded GPUs.

• Based on GLES, we present optimization methods for

fully accelerating the three typical image processing

algorithms of different patterns.

• We implement a high-performance embedded GPU li-

brary, EgpuIP, for many commonly used image process-

ing algorithms based on these optimization chains.

The remainder of this paper is organized as follows. Section

II reviews the related work. Section III introduces the compute

shader and describes the three algorithms in detail. Section

IV presents the proposed performance optimization chains.

Section V describes the specific optimization methods in the

optimization chain when solving three typical algorithms.

Section VI includes the experiments and discussions. Finally,

the conclusion of this paper will be presented in the last

section.

II. RELATED WORK

With the emergence of general-purpose computing on

embedded GPUs and their programming models like GLES

and OpenCL, mobile processors are gaining a more parallel

computing capability. However, the long processing time

and high energy consumption of some image processing

algorithms prevent them from being used effectively in real-

time mobile applications [6].

Recently, GPUCV [7], MinGPU [8], and OpenVIDIA [9]

have emerged as open source image processing and computer

vision libraries based on the GPGPU technique. However,

they are mainly targeted on the PC platform using interfaces

such as CUDA, which are not available on the newest gen-

eration of handheld GPU [10]. The Open Source Computer

Vision Library (OpenCV) uses the OpenCL programming

model to accelerate image processing on embedded GPUs

[11]. Compared with OpenCV, GLES does not yield a big apk

file when implemented during the application development

[12]. GLES is capable of supporting programmable shaders.

Most recent research benefits from this release and takes

advantage of the computational power of mobile battery-

powered graphics processors. However, most of the research

has focused on using parallel computing on GPUs with

the GLSL tools to implement certain specific algorithms,

such as corner detection [13]–[15]. The optimization methods

proposed in these studies only work for specific algorithms

and are not generalizable to handle other image processing

algorithms.

In our work, we classify image processing algorithms

according to their computational and memory access char-

acteristics to propose a strategy for image processing opti-

mization on embedded GPUs using GLES compute shader.

Furthermore, the performance improvement is verified on the

mobile platform.

III. BACKGROUND

A. GLES Compute Shader

The compute shader technology is an approach to take ad-

vantage of the computational power of the GPU to implement

GLES. Compute shaders are executed in workgroups. The

compute shader is called once by each work item in each

local workgroup in the global workgroup. Local workgroups

support up to 128 work items on the hardware platform used

in this paper. This way of working is illustrated in Fig. 1.
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Fig. 1. Compute shader thread organization.

In this figure, each global workgroup contains three local

workgroups, and each local workgroup contains two work

items. Each work item has a unique three-dimensional global

index (the second and third dimension are set to 0 at this

point). Each shader’s execution unit is essentially independent

and can run in parallel on OpenGL-enabled GPU hardware.

This differs slightly from CUDA and OpenCL, which support

wavefront/warp. Therefore, there is no need to consider bank

conflict when designing optimization strategies on the com-

pute shader. The shared memory supported in the compute

shader can be used to communicate between work items in the

same local workgroup. Since the shared memory is typically

backed by either cache or specialized fast local memory [16],

the latency of accessing shared memory is much lower than

accessing image textures or storage buffers. The compute

shader also supports synchronization between work items,

atomic operations on variables, etc. These techniques will be

used frequently in subsequent algorithm optimizations.

B. The Histogram Equalization Algorithm

The image histogram represents the distribution of the

image by quantifying the number of pixels per intensity value.

For example, for a grayscale image, the histogram generation

algorithm counts the number of times each pixel value (from

0 to 255) appears in that image and generates an array called

a histogram containing 256 elements.
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Histogram equalization is a method in image processing

that improves the contrast in an image using the image’s

histogram. It is one of the most common algorithms to

perform contrast enhancement [17]. Useful applications of

Histogram Equalization enhancement include medical image

processing, speech recognition and texture synthesis [18].

Equalization means changing the original histogram by

spreading out the pixels that were previously concentrated on

specific pixel values. A more rigorous representation is that

for the original histogram H(i), the equalized distribution

H ′(i) is given by Eq. (1).

H ′(i) =
∑

0≤j<i

H(j) (1)

Finally, we use H ′(i) to calculate the image, as shown in

Eq. (2).

equalized(x, y) = H ′(src(x, y)) (2)

C. The Gaussian Pyramid Algorithm

1) Gaussian noise and Gaussian filtering: Noise is usually

represented on an image as isolated pixels that cause strong

visual effects but are not relevant to the object to be studied.

Gaussian noise refers to a class of noise whose probability

density function obeys a Gaussian distribution. Gaussian

filtering is a linear smoothing filter applied to eliminate

Gaussian noise and is widely used in the noise reduction

process of image processing.

The conditional probability density function of the two-

dimensional Gaussian distribution is shown in Eq. (3).

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (3)

In practice, two-dimensional discrete Gaussian functions

are commonly used as smoothing filters. A Gaussian filter is

obtained by extending the binomial filter [19] to 5×5 and nor-

malizing it. Eq. (4) and Eq. (5) are the matrix representations

of the binomial and Gaussian filters respectively.

binomial =
1

16

[
1 4 6 4 1

]
(4)

gaussian =
1

256

⎡
⎢⎢⎢⎢⎣

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

⎤
⎥⎥⎥⎥⎦

(5)

For the Gaussian filter, the center value of the convolution

kernel in Eq. (5) is the largest, and the surrounding values

gradually decrease. Furthermore, the effect of Gaussian filter-

ing is better than that of mean filtering.

2) Gaussian pyramid: A Gaussian pyramid is a collec-

tion of images. Specifically, with successive downsampling

and Gaussian filtering, the images on the Gaussian pyramid

gradually decrease in resolution as the layers increase until

a specific termination condition is reached. The principle of

the Gaussian pyramid is shown in Fig. 2.
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Fig. 2. Gaussian pyramid schematic.

D. The Integral Filter Algorithm

The integral filter algorithm filters an image to get its

integral image and is widely used in applications with strong

real-time requirements such as fast feature detection. An

integral image I(x, y) is the sum of original image pixels

i(x, y) at the left and top of the point (x, y) [20]. Its equation

is shown in Eq. (6).

I(x, y) =
x∑
x′

y∑
y′

i(x′, y′) (x′ ≤ x, y′ ≤ y) (6)

Once we compute the integral image, we can find the sum

of pixels in any rectangular region consisting of the upper left

point (x1, y1), and the lower right point (x2, y2) with O(1)
time complexity.

� � � $ �
( $ � ) �
� ( ( � $
$ � ) $ *
* ( � � (

� ( ) + ��
$ �� �( �� �)
* �) �� (� (+
�� �� (� $* )+
�* �+ $� )# ,$

� � � � �
�
�
�
�
�

�

���	�������� �����	��������

Fig. 3. Principle of integral image for fast feature calculation.

As shown in Fig. 3, eight summation operations (4+1+5+
3+3+2+1+5+4) are required to compute the rectangular

region in the left source image, and the computation increases

as the matrix region expand. The procedure is shown in

Eq. (7).

S(x1, y1, x2, y2) =

y2∑
y=y1

x2∑
x=x1

i(x, y) (7)

In contrast, for the integral image on the right, only one

addition and two subtractions (46 + 1− 9− 10) are required

to find the region sum, and the amount of computation does

not increase with the matrix region. The process is shown in

Eq. (8).

S(x1, y1, x2, y2) = I(x1, y1)+I(x2, y2)−I(x1, y2)−I(x2, y1)
(8)
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In face detection [21], Haar-like features are extracted in

this way.

IV. PERFORMANCE OPTIMIZATION CHAINS

According to the memory access and calculation charac-

teristics, we divide image processing algorithms into three

categories and propose effective performance optimization

chains to provide practical programming guidance for em-

bedded GPU image processing developers. The schematic

diagram of the three categories is shown in Fig. 4. The three
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Fig. 4. Classification of algorithms in optimization.

algorithms introduced above belong to the three categories,

which cover most algorithms for image processing. Each

optimization chain consists of some critical methods, which

are organized in order according to the magnitude of their

performance impact.

A. Off-chip Memory Access Optimization Chain

In the first classification in Fig. 4, the pixel mapping at a

certain coordinate is not affected by other pixels. We define

this algorithm that satisfies the completely independent map-

ping of each pixel as a data-independent algorithm. Some of

the simple image geometry transformation algorithms, image

transposition, and color space transformation algorithms fall

into this classification.

The off-chip memory access optimization chain represents

a set of optimization methods used to optimize the utilization

of off-chip memory bandwidth. We defined optimization

spaces as follows: 1) Coalesce global memory access requests

as much as possible through continuous alignment memory

access and vector access. 2) Reduce the program’s depen-

dence on off-chip memory bandwidth by utilizing middle-tier

caches with lower access latency. This chain is mainly used

in the process of optimizing the data-independent algorithms.

B. Data Locality Optimization Chain

As shown in the second classification of Fig. 4, we define

such algorithms that require sharing multiple source image

pixels when computing a destination pixel as data-sharing

algorithms. A large number of filtering, convolution, inter-

polation, and edge detection algorithms are in the scope of

this type.

The data locality optimization chain is defined as a set

of optimization methods that can efficiently access reusable

data, which contain two optimization aspects: 1) Data reuse:

Discover explicitly or implicitly reusable data during the

operation of the algorithm. 2) Data locality: Placing data that

is heavily reused in subsequent operations in shared memory.

This chain is mostly applied to the optimization of data-

sharing algorithms.

C. Communication Optimization Chain

In the data-related algorithm, the computation of one desti-

nation pixel uses the computation result of another destination

pixel. The third category in Fig. 4 illustrates this relationship.

We can define the communication optimization chain as a

set of optimization methods that share computational results

between threads. The optimization chain often requires re-

designing the algorithm to parallelize the sharing of results

between threads. For the most part, it is used in the optimiza-

tion of data-related algorithm.

D. Computation Optimization Chain

Furthermore, we propose the computation optimization

chain, which can achieve more extreme performance for the

three types of algorithms mentioned above. The computation

optimization chain is defined as a set of optimization methods

that can make full use of computation resource, which contain

three optimization aspects: 1) Improving thread-level paral-

lelism. 2) Reducing dynamic instruction count per thread. 3)

Instruction selection optimizations.

V. OPTIMIZATION CASE

A. Optimization of Data-Independent Algorithms

The histogram equalization algorithm can be divided into

three main steps: histogram generation, array equalization,

and image equalization.

1) Coalesce global memory access requests: The array

equalization of the grayscale image contains only 256 ele-

ments. This process can be computed by enabling a single

thread or on the CPU. For image equalization, the algorithm’s

pixels are independent and parallelizable, making it ideal for

massively parallel GPU processing. The attention of image

equalization optimization should be paid on fully exploiting

memory bandwidth. Since the image textures of a single

channel in the compute shader are not stored contiguously

in memory, vectorizing the access memory to improve the

off-chip memory bandwidth utilization is hard to achieve.

2) Reduce dependence on off-chip memory bandwidth:
a) Optimization analysis: The histogram generation op-

eration count the number of pixels on each pixel value. It

is theoretically well parallelized because each pixel value’s

counting are independent and can be assigned to different

threads for parallel processing. However, there are serious

concurrency conflicts among threads, which make us resolve

the access conflicts by atomic operations, which achieve

mutually exclusive protection of variables shared by multi-

ple threads. The atomic operation of global memory makes
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the access memory serialized, which seriously affects the

algorithm performance. We reduce the atomic operations on

global memory and improve the concurrency between threads

by histogram localization. In addition, this paper improves

the utilization of GPU computing resources by selecting the

optimal number of workgroups to achieve the best balance

between counting and reduction.

b) Histogram localization: Accessing global memory is

very costly, as local memory access may take only a few

clock cycles, while global memory takes hundreds of clock

cycles [22]. In the basic GPU implementation of the histogram

generation algorithm, threads perform atomic operations on

the histogram array stored in global memory. Due to the

sequential access to the histogram array by threads and the

high access latency of the global memory, many threads are

left idle. We chunk the images so that each piece is processed

by a workgroup and stores its local histogram in each shared

memory. We refer to this operation as histogram localization.

This method divides the histogram generation algorithm into

two steps: counting and reduction. The process of counting

and reduction is shown in Fig. 5.
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Fig. 5. Counting and reduction of histogram generation algorithm [23].

The data from each block is processed in parallel between

workgroup during the counting step and written to global

memory using atomic operations on a per-block basis in

the final reduction step. This approach dramatically reduces

atomic access to global memory and improves the algorithm’s

utilization of on-chip memory bandwidth.

c) Select the optimal number of workgroups: The num-

ber of workgroups needs to be well traded off for the two

phases of counting and reduction. If the number of work-

groups is large, the amount of data computed within each

workgroup in the counting phase is small correspondingly,

which leads to a large amount of data needing to be processed

in the reduction phase. There are different optimal workgroup

numbers for different image sizes. The optimal number of

workgroups is adequately measured to be 256 for the image

resolution of 1080P.

B. Optimization of Data-Sharing Algorithms

Gaussian pyramid generation is multiple executions of the

pyramid down operation. Therefore, this algorithm’s opti-

mization mainly focuses on optimizing the pyramid down

operation. We minimize the number of computational in-

structions by combining the downsampling and filtering and

significantly reducing the access latency by separating the

filtering in the row and column directions. The process is

shown in Fig. 6.
1) Data reuse and data locality: We separate the 5 × 5

filter kernels into two one-dimensional filter kernels in the

row and column directions, respectively. As shown in Fig. 6,

the algorithm filters the 5 × 5 image matrix in the column

direction to obtain a 1× 5 matrix and then performs the row

direction filtering to obtain the final value. In this process,

the generated 1 × 5 matrix is heavily reused in subsequent

calculations. For example, the 1 × 5 matrix obtained when

calculating the second target pixel has three reused elements

with the first 1×5 matrix. The memory access latency can be

greatly reduced if the heavily reused elements are stored in the

on-chip shared memory. In our work, the data after filtering

by column is stored in the shared memory, and subsequent

filter-by-row operations can access the data from the shared

memory with much lower latency. This optimization strategy

can significantly enhance the improved reuse of on-chip

hardware resources.
2) Reduce the operation instructions:

a) Operation fusion: The algorithm uses a Gaussian

kernel for image convolution and removes all even rows and

columns to achieve downsampling. The number of computa-

tional instructions can be significantly reduced if the Gaussian

kernel is convolved in interval rows and columns.
b) Reduce branch instructions: We reduce the number

of dynamic instructions by eliminating conditional branches.

In the Gaussian pyramid, conditional branching occurs when

we compute the boundary elements. Two main ways are suit-

able for computing the boundary elements. One is to fill the

boundary before uploading the image to the GPU. The other

method uses a judgment statement in the kernel to handle the

boundaries. The first approach simplifies the GPU kernel but

increases the consumption of valuable memory resources on

mobile devices. We adopt the second approach and use the

ternary operator instead of conditional judgments. Since there

is no access instruction in the ternary operator, the statement

will be compiled into a single instruction. Therefore, in the

boundary processing method of this paper, the address of the

boundary data is first calculated using the ternary operator,

and then the boundary data is loaded into the program in

unison with the non-boundary data. Experiments show that the

performance of boundary processing with ternary operators is

improved by an average of 10%, which will be demonstrated

in Section VI.

C. Optimization of Data-Related Algorithms

We decompose the integral filter algorithm by row direction

and column direction. The row direction algorithm is the

exclusive scan operation, as shown in Eq. (9).

[a0, a1, · · · , an−1] → [0, a0, (a0 + a1), · · · ,
n−2∑
i=0

ai] (9)

When implemented on GPU, we further decompose the

column direction’s integral filter algorithm into transpose and
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Fig. 6. Optimization of pyramid down.

exclusive scan operation to improve memory access perfor-

mance. The integral filter algorithm is finally transformed into

two exclusive scan operations and one transpose operation.

The transpose algorithm is typically memory bound, so the

optimization focuses on fully exploiting memory bandwidth.

This optimization method has been introduced in the previous

section and will not be repeated here. This section focuses on

optimizations for other stages. For exclusive scan operations,

we use a three-stage parallel prefix-sum algorithm based

on a binary tree [24]. To fully utilize the on-chip memory

bandwidth, the operations are performed in place using shared

memory.
1) Redesign algorithm to parallelize the sharing results:

a) A three-stage parallel prefix-sum algorithm based on
binary trees: The improved prefix-sum algorithm used in our

work redesigns the naive prefix-sum algorithm. The algorithm

performs a total of 2 ∗ (n− 1) addition operations and (n−
1) swap operations with a complexity of O(n). It increases

the total workload linearly with the growth of data elements,

reduces each thread’s computation instructions, and eventually

enhances the program’s performance. The specific flow of the

algorithm is shown in Fig. 7.
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Fig. 7. The three stages of the parallel prefix-sum algorithm [25].

In Fig. 7, a bottom-up traverse is performed in box 1. After

doing that, we assign 0 to the last node. Then we do a top-

down traverse in box 2. After the top-down traverse, we add

the array with the original array correspondingly, which shows

in box 3. At this point, we have obtained the prefix sum of a

4-element array. Limited by the hardware platform, our kernel

cannot scan arrays with sizes larger than 256. In our work,

the number of threads per block is 128, and a single thread

processes two elements.
b) Scan the whole image: For a specific n-element size

row of the image, we launch local workgroups of n/b and

b/2 work items per group. In our work, the size of b is 256.
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Fig. 8. Row direction prefix sum schematics [25].

As shown in Fig. 8, each workgroup scans a data block to

get a local scan block. The last element of each local scan

block is the local sum of the current data block, which we

load into the array S. Then, we scan the array S and get the

prefix sum of each local scan block. At this point, we add

S[i] to each element of the (i+ 1)th local scan block to get

the prefix sum of the whole row.

Each row can be considered a separate array and scanned

in parallel. In addition, we also parallelize each 256-sized

block of data in each row. For an image, we launch a scan

kernel using a grid with dimensions nseg × h, where nseg is

the number of segments in each row, and h is the height of

the image. In order to solve the problem that the last block

in each row is not a power of 2 in size, padding is performed

before scanning.
2) Use higher throughput instructions: GPUs have dif-

ferent instructions with different throughput because of the
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distinctions in the number of functional units and the intrinsic

characteristics of instruction self [26]. Selecting computation

instructions with lower latency and higher throughput can

effectively improve the performance of GPU programs. We

use bitwise instructions instead of multiplication and division

instructions for all power-of-2 operands, and the former has

about five times higher throughput than the latter.

VI. PERFORMANCE EVALUATION

We select the CPU version function in OpenCV 4.5,

the most famous computer vision library, to compare the

performance and validate the correctness of our own GLES

version.

A. Test Environment

We test the performance of EgpuIP and OpenCV on Mali-

G77 GPU platform, the specific platform parameters are

shown in TABLE 1.

TABLE I
EXPERIMENTAL PLATFORM SPECIFICATIONS

Specs Value
GPU Arm Mali-G77 MC9

Memory 12GB RAM + 256GB ROM
Architecture Valhall

L2 Cache 512KB – 2MB
Bus Interface AMBA 4 ACE, ACE-LITE

Scalability 7 to 16 Cores
OpenCV 4.5.5

OpenGL ES 3.2

The total storage size for all shared variables in a compute

shader is defined by 32768 bytes. The product of the X, Y,

and Z components of the local size must be less than 128, and

the number of work groups that can be dispatched in a single

dispatch call is defined by 65535 in X, Y, and Z dimensions.

B. Result and Analysis

The benchmark of an algorithm is its serial implementation

on CPUs. The test interface in this paper is oriented to un-

signed char, single channel images. The performance results

of histogram equalization, Gaussian pyramid, and integral

filter algorithms are shown in Fig. 9, Fig. 10, and Fig. 11,

respectively. The bar chart reflects the time-consuming (in

milliseconds) of the three implementations, and the two

speed-up ratio line graphs respectively show the performance

improvement of EgpuIP and OpenCV compared to the bench-

mark.

Our histogram equalization implement achieves an average

of 6.07 times speedup compared with OpenCV and 18.74

times speedup compared with the benchmark. Compared with

the OpenCV Gaussian pyramid algorithm, we get 29.93 times

speedup on average. Moreover, the integral image algorithm

in EgpuIP obtains 9.09 times speedup on average compared

with the sequential algorithm running on the CPU and 2.21

times speedup compared with OpenCV, as shown in Figure

11.
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Fig. 9. The histogram equalization performance on Arm Mali-G77 GPU.
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Fig. 10. The Gaussian pyramid performance on Arm Mali-G77 GPU.
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Fig. 11. The integral filter performance on Arm Mali-G77 GPU.
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The specific performance improvements we discuss in the

reducing branching instructions section in Section V are

shown in the Fig. 12.
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Fig. 12. Performance improvement after reducing the number of boundary
processing instructions.

VII. CONCLUSION

In this paper, we propose practical performance optimiza-

tion chains for image processing on embedded GPUs and

present the optimization of three classical algorithms based on

these chains. The effectiveness of our proposed optimization

chains is verified by performance improvement analysis.

Most of the data-independent algorithms are memory-

bound, the key to optimization is reducing the off-chip

memory bandwidth consumption. Data-sharing algorithms are

designed to reuse many source image pixels, so the key to

optimization is data locality to minimize the access latency

caused by data reuse. By splitting algorithms, we can further

improve data reusability. Data-related algorithms are charac-

terized by the fact that the computation of one destination

pixel uses the computation result of another destination pixel.

This optimization often requires redesigning the algorithm to

share results across threads and achieve good parallelization

among threads.
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