Check for
Updates

IATF: An Input-Aware Tuning Framework for Compact BLAS
Based on ARMv8 CPUs

Cunyang Wei
State Key Lab of Processors, Institute

of Computing Technology, Chinese

Academy of Sciences
School of Computer Science and

Technology, University of Chinese

Academy of Sciences
Beijing, China
weicunyang20g@ict.ac.cn

Liusha Xu
Huawei Technologies Co., Ltd.
Beijing, China
xuliusha@huawei.com

ABSTRACT

Recently the mainstream basic linear algebra libraries have deliv-
ered high performance on large scale General Matrix Multiplica-
tion(GEMM) and Triangular System Solve(TRSM). However, these
libraries are still insufficient to provide sustained performance for
batch operations on large groups of fixed-size small matrices on
specific architectures, which are extensively used in various sci-
entific computing applications. In this paper, we propose IATF, an
input-aware tuning framework for optimizing large group of fixed-
size small GEMM and TRSM to boost near-optimal performance
on ARMvS architecture. The IATF contains two stages: install-time
stage and run-time stage. In the install-time stage, based on SIMD-
friendly data layout, we propose computing kernel templates for
high-performance GEMM and TRSM, analyze optimal kernel sizes
to increase computational instruction ratio, and design kernel op-
timization strategies to improve kernel execution efficiency. Fur-
thermore, an optimized data packing strategy is also presented
for computing kernels to minimize the cost of memory accessing
overhead. In the run-time stage, we present an input-aware tuning
method to generate an efficient execution plan for large group of
fixed-size small GEMM and TRSM, according to the input matrix
properties. The experimental results show that IATF could achieve
significant performance improvements in GEMM and TRSM com-
pared with other mainstream BLAS libraries.

CCS CONCEPTS
« Computing methodologies — Parallel algorithms.
“*Corresponding authors

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICPP ’22, August 29-September 1, 2022, Bordeaux, France
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9733-9/22/08.
https://doi.org/10.1145/3545008.3545032

Haipeng Jia®
State Key Lab of Processors, Institute
of Computing Technology, Chinese
Academy of Sciences
Beijing, China
jiahaipeng@ict.ac.cn

Yunquan Zhang
State Key Lab of Processors, Institute
of Computing Technology, Chinese
Academy of Sciences
Beijing, China
zyq@ict.ac.cn

JiQi
Huawei Technologies Co., Ltd.
Beijing, China
ryan.qiji@huawei.com

KEYWORDS
Compact Batched BLAS, Auto-tune, Code Generation

ACM Reference Format:

Cunyang Wei, Haipeng Jia, Yunquan Zhang, Liusha Xu, and Ji Qi. 2022. IATF:
An Input-Aware Tuning Framework for Compact BLAS Based on ARMv8
CPUs. In 51st International Conference on Parallel Processing (ICPP’22), August
29-September 1, 2022, Bordeaux,France. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3545008.3545032

1 INTRODUCTION

BLAS(Basic Linear Algebra Library) is one of the most basic and
widely used libraries in scientific computing, machine learning [5]
and other applications. Optimization of large-scale dense linear
algebra libraries is already a well-studied field [15]. While many
linear algebra libraries have been well designed and optimized,
like Arm Performance Libraries (ARMPL) [1], Intel oneAPI Math
Kernel Library(Intel MKL) [2], and OpenBLAS [3], delivering near
processor peak performance. In addition to the widespread use
of large-scale dense matrix operations, many applications apply
BLAS routines to large group of small matrices, such as PDE based
simulations [14], high-order Computational Fluid Dynamics(CFD)
[20], machine learning [12], and image processing. Therefore, opti-
mization of large group of small matrices operation is increasingly
important.

A good way to deal with large group of small matrices operation
is in batch form, which means that it processes many matrices
simultaneously. In batch operations with small matrices, traditional
optimization methods for large-scale dense matrix operations are
inadequate to achieve optimal performance. The following four
reasons limit the acceleration efficiency of traditional methods. First,
the very small matrix is difficult to fully utilize the width of the
SIMD register under traditional methods. Second, edge processing
causes many overheads for small matrices. Third, the small matrix
can be stored entirely in the L1 cache, making the original tiling
methods meaningless. Fourth, traditional methods lack an input-
aware tuning framework to generate high-performance execution
plans for small matrices of different sizes. Although optimization

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3545008.3545032
https://doi.org/10.1145/3545008.3545032
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3545008.3545032&domain=pdf&date_stamp=2023-01-13

ICPP °22, August 29-September 1, 2022, Bordeaux, France

Input Parameters Batch Counter

Number of Each

Cunyang Wei, Haipeng Jia, Yunquan Zhang, Liusha Xu, and Ji Qi

Execution Plan GEMM/TRSM

Pack Selecter

(M, N, K, NM) Packing Generator Executing Plan
Select by m, n, k Select by m, n, k
and trans, side, T At
datatype, up/low P
@ Packing Gene_rated Basic Pack
o 5 o Designer Packing Method Kernels
= '§ ,,% % SIMD-frlendIy Compute the Compact
5 8 % = Data Layout Batched GEMM/TRSM
E g [a) Kernel ~ Generated Basic Kernel |nstruction c t
(= Designer Kernels Optimizer Layout KOeTrE):Ise

Figure 1: Overview of An Input-aware Tuning Framework.

studies for batch BLAS have demonstrated promising performance,
optimization studies for a large group of small fixed-size matrix
operations on ARMv8 CPUs are still insufficient.

This paper presents IATF, an input-aware tuning framework to
optimize large group of small GEMM and TRSM on ARMv8 CPUs.
It contains two stages, the install-time stage and the run-time stage.
At the install-time stage, we convert the matrix to the SIMD-friendly
data layout [14], which makes full use of the SIMD register width.
It generates highly-optimized data packing kernels and computing
kernels. For the computing kernel design, we avoid pipeline bubbles
through careful instruction schedule and reduce edge processing
problems by generating kernels of all possible sizes. We carefully
design the data packing kernel so that the memory accesses of
the computing kernel are contiguous. At the run-time stage, it
chooses an appropriate number of matrices for batch forming each
time according to L1 cache size and matrix size, and chooses the
optimal data packing kernel and computing kernel according to the
input matrix properties(Matrix Size, Transposed/Non-Transposed,
Left/Right, Lower/Upper, Unit/NonUnit). Finally, it links the above
strategies into execution plans for high-performance processing
of large group of fixed-size small matrices GEMM and TRSM on
ARMvVS architecture.

We apply the IATF to the Kunpeng 920 CPU [21] based on the
ARMvVS architecture. For the sgemm, dgemm, cgemm, and zgemm,
compared to looping calls to the OpenBLAS GEMM interface, our
library IATF can provide up to 21x, 7x, 12x, and 6x speedups respec-
tively. Compared to the ARMPL batched GEMM, the IATF achieves
up to 8x, 4x, 8x, and 5x speedups for the four data types. Further-
more, compared with the LIBXSMM batched GEMM interface, IATF
still provides up to 5x speedup for sgemm and up to 2x speedup
for dgemm. For TRSM, compared with the ARMPL and OpenBLAS
cyclically calling the TRSM interface, IATF is 28x, 12x, 10x, and 5x
faster than looping calls to the OpenBLAS TRSM interface for the
strsm, dtrsm, ctrsm, and ztrsm respectively. Compared to the loop
around ARMPL TRSM calls, our implementation achieves up to 7x,
5%, 4x, and 3x speedups for the four data types. We also use the
percentage of processor peak performance as a benchmark, which
is still competitive with the Intel MKL compact BLAS interface on

the Intel Xeon Gold 6240 CPU. These results demonstrate that our
proposed methods are extremely competitive for fixed-size large
group of small GEMM and TRSM.

The key contributions of this paper are summarized as follows:

o This paper proposes a high-performance input-aware tuning
framework for large group of small matrices operations.

e Based on SIMD-friendly data layout, this paper presents a
series of data packing methods and kernel design methods for
large group of small matrices compact GEMM and compact
TRSM, to dramatically improve performance.

o This paper applies our design methods to a high-performance
BLAS library(IATF) for large group of fixed-size small GEMM
and TRSM based on the ARMv8 architecture.

The rest of the paper is organized as follows. Section 2 presents
the related work. Section 3 describes the overview of the framework.
Section 4 and Section 5 elaborate on the design and implementation
details of IATF. Section 6 presents the performance evaluation of
our proposed framework. Finally, Section 7 concludes this paper
with future work.

2 RELATED WORK

2.1 Traditional GEMM Algotithm

GEMM is used to solve the problem C = aAB + C. Where A is
MXxK,Bis KX N, and C is M X N. Traditional GEMM optimization
usually uses the algorithm proposed by GOTO [9]. Its optimization
direction mainly includes matrix tiling, data packing, and comput-
ing kernel design [17]. Efficient matrix multiplication tiles matrix
to make full use of multi-level cache and improve data locality. Data
packing makes compute kernel memory accesses contiguous. For
the computing kernel, optimizing the instruction pipeline arrange-
ment so that the computing instruction hides the memory access
delay.

This article references these design ideas, but the implemen-
tation differs from them. For small matrices, each matrix can be
completely stored in the L1 cache. The traditional tiling method
is meaningless. We should consider simultaneously operating on

IATF: An Input-Aware Tuning Framework for Compact BLAS Based on ARMv8 CPUs

X1 B1

X2

Figure 2: Tiling method of TRSM.

B2

I

several matrices(not exceeding the L1 cache). For computing ker-
nel design, the main idea is to reduce pipeline bubbles and edge
processing. We refer to traditional optimization methods and the
optimization methods for small-matrix [7, 8, 11, 18, 19, 22, 23].

2.2 Traditional TRSM Algorithm

TRSM is used to solve problems of the equation AX = aB, where
A is a triangular M X M matrix, X and B are M X N matrices. Or
XA = aB, where A is a triangular N X N matrix, X and B are
M x N matrices. Finally, B is overwritten by the solution matrix X.
Similar to the implementation of traditional GEMM, the main idea
of TRSM is still to divide the matrix into blocks [6, 10], as shown
in Figure 2. The large scale TRSM problem under this tiling idea
can be calculated using the following formula, which transforms
the problem into small triangular blocks solution and rectangular
blocks calculation.

X1 =L]lB

Xp = Ly, (Bz — Lo1X1) ey

X3 = Ly; (B3 — L31X1 — L32X)

The triangular part needs special treatment, and the rest can be
converted into the GEBP operation in the GEMM function, where
B stands for block and P stands for panel. The triangular part only
accounts for a small part of the entire TRSM for the large-scale
matrix, so the traditional TRSM algorithm usually does not vectorize
this part. For data packing, the diagonal elements are converted to
their inverses(a%_i), so that in the calculation kernel, only vectorized
multiplication and addition operations are performed.

In the kernel design, we focus on the calculation of the triangular
part, and the rest can refer to the GEMM kernel design. For the
triangular part, we design a vectorization solution method based on
SIMD-friendly data to improve parallelism. In addition, we redesign
the rectangular kernel to optimize performance further.

2.3 Batch BLAS and Small-Sized BLAS

There has been research in the community for GPU to specifically
design GEMM kernels and automatic tuning methods for small-
scale problems on optimizing batch matrices of variable size and
fixed size [4]. For X86 architecture, the SIMD-friendly data lay-
out adopted by Intel MKL [14] can make full use of the width
of the vector register in modern processors, and by processing a
group of matrices with the same operation, efficient vectorization
of small matrices is possible. We evaluate this method and find
that Intel MKL compact BLAS has obtained promising progress
performance acceleration while using the SIMD-friendly data lay-
out. For the ARM architecture, the community focus on batched
BLAS operations, which is mainly for large group of small matrices

ICPP °22, August 29-September 1, 2022, Bordeaux, France

of different sizes, such as the batch GEMM interface of ARMPL
[1] and LIBXSMM [11]. These batch optimizations are parallelized
between matrices and do not use SIMD-friendly data layout. In ad-
dition, there are some optimizations for small matrices [7, 23] that
improve performance by reducing data packing and redesigning
the computing kernel. LibShalom [23] is an open-source library for
optimizing small and irregular-shaped GEMMs, based on ARMv8
architecture. It improves the performance of the GEMM kernel by
improving the shortcomings of existing BLAS libraries, such as the
overhead caused by data packing, inefficient boundary processing,
and unreasonable parallelism methods.

There are no relevant further optimizations for small matrices
of the same size for the ARM architecture. Our work aims to fill a
gap in optimization research for compact batched BLAS on ARMv8
CPUs.

3 OVERVIEW OF INPUT-AWARE TUNING
FRAMEWORK

This paper proposes an input-aware tuning framework. As shown
in Figure 1, it is divided into the install-time stage and the run-
time stage to achieve near-optimal performance for large group of
fixed-size small GEMM and TRSM.

The install-time stage generates highly-optimized data pack-
ing kernels and computing kernels based on the abstracted com-
puting kernel template described in section 4.2. The computing
kernel template is called template in the following text for brevity.
It contains the following components:

e Packing Kernel Designer generates data packing kernels
for each data type and matrix properties.

e Computing Kernel Designer generates computing ker-
nels for each data type and different kernel sizes based on
the abstracted templates.

o Kernel Optimizer optimizes the computing kernels to achieve
optimal performance by optimizing instruction placement.

The run-time stage chooses the optimal kernels from the install-

time stage according to input matrix properties(Matrix Size, Transposed/Non-

Transposed, Left/Right, Lower/Upper, Unit/NonUnit), to generate
the optimal execution plan for high-performance large group of
small GEMM and TRSM. It contains the following components:

¢ Batch Counter determines the number of matrices for each
GEMM or TRSM operation based on L1 cache size and matrix
size.

o Pack Selecter chooses the optimal data packing kernels or
not data packing according to matrix properties.

o Execution Plan Generator selects the optimal computing
kernels and combines the data packing kernels to generate
an execution plan.

4 THE DESIGN OF INSTALL-TIME STAGE

In the install-time stage, several highly-optimized data packing ker-
nels and computing kernels are generated according to the typical
template described in 4.2, based on the SIMD-friendly data layout.
The packing strategy depends on the computing kernel. We design
the optimal computing kernel for every possible matrix size and
datatype, and design the data packing kernels to match it.

ICPP °22, August 29-September 1, 2022, Bordeaux, France

M311 M31é1 M313

—
e

M211 || M212 || M213
M311 || m312 || m313
matt || maf2 || mafs

¥ m321|| M322| | M323)

M331| ¥ M332| M333] ! i

Mm221 || md22 || mb23
; ;
. I:> ms21 || ma22 || w323

m211| | M213[} M2 Ma11|| Ma12]] mard]’ Ma21 || mazz || maz3
i : H H : :
{ { i i H H

:

M221| | M222f| M223| | | Ma21| Ma22| | M423 w231 | [w232 |[F m2as
; ; ;

H M331 [§ m332 [/ M333
H i H H
M231 ! M232| i M233| M431 H M432) ! M433] TN AL

Figure 3: SIMD-friendly Data Layout:3 X 3 matrices on Kun-
peng 920.

4x4 4x4 4x4 4x3

12x8 12x4 | x 12x1 Ax4 Ax4 Ax4 4x3

ax4 | 4x4 | 4x4 | 4x3

28 28 || == 201 a4 | 3xa | 3x4 | 3x3
1x8 1x4 1x2 1x1

(b) Compact tiling method

(a) Traditional tiling method

Figure 4: Tiling method of 15 X 15 DGEMM.

4.1 SIMD-friendly Data Layout

We apply the SIMD-friendly data layout [14] on the ARM architec-
ture to make full use of SIMD registers width. As shown in Figure
3, for a group of matrices, SIMD-friendly data layout puts the same
location of consecutive P matrices in a contiguous area in memory,
with zero padding for the cases where there are not enough P ma-
trices. The value of P is according to the data type and the length
of the SIMD register. For example, for the 128-bit SIMD register of
Kunpeng 920, single-precision floating-point data operation, P=4,
the data just fills the length of the SIMD register.

Algorithm 1 describes a simplified SIMD-friendly data layout
based GEMM. NM represents the number of batch matrices. As
shown in lines 5-7 of the algorithm, under the SIMD-friendly data
layout, we can use vectorized instructions to load the data of P
matrices to the SIMD registers. And then calculate via SIMD FMA
instruction in line 8. Finally in line 9 store in memory from SIMD
registers. It shows that we can use vectorization instructions to
process P matrices simultaneously with the SIMD-friendly data
layout.

In addition, Figure 4(a) shows the traditional SGEMM block strat-
egy under the ARMv8 architecture when the matrix C is 15 X 15 in
size. A 128-bit register can store 4 single-precision data. Therefore,
except for 12 X 8 blocks and 12 X 4 blocks, others can not fully
utilize SIMD register data lengths. We can see that the cost of edge
processing kernels is even higher than the main kernel. As shown

Cunyang Wei, Haipeng Jia, Yunquan Zhang, Liusha Xu, and Ji Qi

Algorithm 1: Simplified compact GEMM
Input: A:M X K; B:K X N; C:M X N;
NM:Total number of matrices
Output: C+ = AX B
1 forv=0— NM -1, step = P do

2 forj=0—> N-1do

3 fori=0—> M-1do

4 fori=0—>K-1do

5 LOAD V; « Clv = v+p—1](i,J))

6 LOAD Vy; «— Alv - v+p—1]3,1)

7 LOAD Vj, « Blv = v+p—1](J)

8 Ve « FMA(Vy, V)

9 STORE V; — Clv = v+p—1]3,))

in Figure 4(b), under the SIMD-friendly data layout, we can make
the kernel smaller than the traditional kernel because the SIMD
registers are filled with multiple matrices. For example, the main
kernel of Figure 4(b) is 4 X 4 kernel that actually processes 4 x 4
blocks of 4 matrices at a time, based on SIMD-friendly data layout,
for single-precision floating point. The reduction in kernel size can
also reduce the occurrence of edge processing problems.

4.2 Kernel Design

We abstract the typical computing patterns of GEMM/TRSM as
templates (Algorithm 2, 3). Based on the SIMD-friendly data layout,
we abstract the computing kernel for GEMM, and design vectorized
triangular and rectangular computing kernels for TRSM. We then
automatically generate the assembly kernels through the templates
for the upper-level functions to invoke. Automatic code generation
can significantly reduce the workload of our approaches. Our main
design idea is to avoid pipeline bubbles. In the following context,
we assume that for GEMM, the matrix A is M X K, the matrix B
is K X N, and the matrix C is M X N. For TRSM, supposing the
problem is AX = B, the matrix A is M X M, the matrix B and the
matrix X are M X N. m¢, n. represent the kernel block size.

4.2.1 GEMM kernel design. Algorithm 2 shows our abstracted
GEMM template. It contains 6 templates(I, M1, M2, E, SAVE, SUB),
and each template computes the matrix matrix multiplication (via
me Xne SIMD FMA/FMUL) of PXm X1 of A matrices with PX1Xn,
of B matrices to obtain the P X m. X n. of C matrices, as shown
in line 5,10,14,16 and 20. Matrix C is store in the SIMD register
Vo(me+ne) = Va(me+ne)+mexno—1> and the value of P refers to the
number of data that can fill the SIMD register. For each input matrix
kernel size, it uses these 6 templates(I,M1,M2,E,SAVE,SUB) to imple-
ment the "ping-pong" operation, that is to load the data needed by
the next template in the current template to avoid pipeline bubbles.
Specifically, in the computing kernel, I is the entry of the kernel.
As shown in lines 3-4, it loads the data it needs and loads the data
required by M2. It completes the computing at line 5. M1 loads
the data required by M2 at lines 8-9 and completes the computing
at line 10. M2 loads the data required by M1 at lines 12-13 and
completes the computing at line 14. E is the exit of the kernel that
only contains calculation instructions, as shown in line 16. When

IATF: An Input-Aware Tuning Framework for Compact BLAS Based on ARMv8 CPUs

K is large enough, it will iterate in MI, M2. When K < 4, it is not
enough to iterate M1, M2, so SUB is used, it only loads the data it
needs at line 18-19, and complete the computing at line 20. Finally,
use SAVE to store the matrix in memory at lines 22-25.

Algorithm 2: Computing kernel templates of compact
GEMM
Input: pA; : me X K; pBe : K X ne; Ce - me X ne;
Output: Computing micro-kernel
1 [*Clmxn,] < Va(me+ne) = Va(me+ne)tmexne—1 * |

2 TEMPLATE_I

Vo — Vim—1/*For Ix/
’ LOAD{ Vine = Voam.-1/*For M2/ < PApm,]
Vom, = Vame+ne—1/*For I/
4 LOAD ¢ ctne — B
{ Vome+ne = Vame+2n.—1/xFor M2 [PB(2n,]

5 | Clmexne] < FMUL(Vo = Vin.-1, Vam, = Vamg+n.-1)
6 | /+*Vector —Vector Multiply =/

7 TEMPLATE_M1

8 LOAD Vi, = Vame—1 < pA[ixm,]

9 LOAD VZmC+nC - VZ(mC+nC)—1 (_PB[lxnc]
0 | C[mcxnc] — FMA(Vp - Vine-1, Vam, — VZm,_.+nc—1)
11 TEMPLATE_M2
12 LOAD Vo - Vmc—l — PAlIchJ
13 LOAD Vam, = Vame+n.-1 (_PB[lxnc]
4 | Cimexng] & FMA(Vi, =Vam-1, Vame+n. —Vam,+2n,-1)
TEMPLATE_E

| Cimexne] & FMA(Vim, =Vom -1, Vemg+ne =Vemo+2ne—1)
7 TEMPLATE_SUB
18 LOAD V() - Vmc—l — pA[1><mc]
19 LOAD Vam. = Vame+n.-1 <—PB[1><nC]
20 | C[mCchJ — FMA(VO - Vmcfl, V2mc - VchJrn,rl)
21 TEMPLATE_SAVE
22 LOAD Vp - Vz(mc+nc)71 — originC[chnc]
23 Vo — VZ(mc+nc)—1 — FMA(C[mCXnC],Alpha)
24 /*Scalar — Vector Multiply = |
25 STORE Vo — Va(mo+ne)-1 = 0riginCm xn,)

[
o @

-

As shown in Algorithm 3, the computing kernel generator calls
the above 6 templates to generate the assembly kernel according
to the size of the input matrix kernel. It updates the P X m. X n,
of matrix C block by computing the matrix matrix multiplication
of P X m¢ X K size matrix A block and P X K X n. size matrix B
block. Especially when the entire matrix C block is calculated, it
is stored in memory. Complex matrix matrix multiply kernels are
similar. After defining the templates, we need to find the optimal
kernel size to utilize the 32 SIMD registers fully.

The main idea of finding the optimal kernel size is to maximize
the compute-to-memory-access ratio(CMAR) [16], which is impor-
tant to effectively hide memory access latency for computational
instructions in the micro-kernel. Notice that we need to reserve
registers for "ping-pong" operations. Therefore, for DGEMM and
SGEMM, the template needs 2m, vector registers to store matrix

ICPP °22, August 29-September 1, 2022, Bordeaux, France

Algorithm 3: Computing kernel generator of compact
GEMM
Input: pA; : me X K; pBe : K X ne; Ce @ me X ng;
Output: Compute kernel(C, = A X B¢ + alpha X C.)
1 if K < 4 then
2 if K == 3 then
3 L TEMPLATE_I; TEMPLATE_E; TEMPLATE_SUB,;

4 else if K == 2 then
5 L TEMPLATE_I; TEMPLATE_E;
6 else

7 VZ(mc+nc) - VZ(mc+nc)+mc><nc—l «— Empty
TEMPLATE SUB,;

9 else

10 | TEMPLATE_I; TEMPLATE_M2; K- = 2;

11 while K > 2 do

12 | TEMPLATE_M1; TEMPLATE_M2; K- = 2;

13 if K == 2 then
14 L TEMPLATE_M1; TEMPLATE_E;

15 else
16 L TEMPLATE_SUB;

7 TEMPLATE_SAVE;

-

A, 2n. vector registers to store matrix B, and m. X n, vector reg-
isters to store matrix C. We use vector-vector FMA instructions
for matrix computation and store the matrix C after iteration in K
dimensions. Thus, on average, each micro-kernel needs (m¢ + nc¢)
load operations and m, X n. computation operations. The average
CMAR is:

me X ne
CMAR,¢q =

me + ne @
We have to satisfy 2m, + 2n¢ + mene < 32. It is easy to verify that
CMAR, ., reaches its maximum value when m, = 4 and n, = 4.
The total ratio of computational instructions reaches the maximum
at this time. For DGEMM and SGEMM, the optimal kernel size is
4Xx4.

For complex data, we need 4m, vector registers to store matrix
A, 4n. vector registers to store matrix B, and 2 X m, X n. vector
registers to store matrix C. On average each micro-kernel needs
2(m¢ + nc) load operations and 4 X m¢ X n, computation operations.
The average CMAR is:

4 X me Xne

CMAR omplex = 2me T 10)
c c

®)
Also, we have to satisfy 4m. + 4n; + 2men. < 32. when m¢ = 3
and ne = 2 or me = 2 and nc = 3, the CMAR 4 plex Teaches its
maximum. For CGEMM and ZGEMM, the optimal kernel size is
3X2o0r2x3.

Based on the main computing kernel, we design kernels for
every possible edge case for the problem of large proportion of
edge processing in small matrices. These kernels can also be simply
generated based on our abstracted templates. For compact GEMM,
Table 1 shows all of our highly-optimized kernels in this paper. In
this way, as shown in Figure 4, we can use 4X4, 4% 3,3x 4, and 3 X3
kernels to solve 15 X 15 compact GEMM, avoiding the generation

ICPP °22, August 29-September 1, 2022, Bordeaux, France

Table 1: All generated kernels

SGEMM CGEMM STRSM CTRSM
DGEMM ZGEMM DTRSM ZTRSM
Main 4x4 3xX2 4X4 2X2
Edge 4x{1,2,3} 3x1 3x4 1X2
3x{1,2,3,4} 2x{1,2} 2x4
2x{1,2,3,4} 1x{1,2} 1x4
1x{1,2,3,4}

of particularly small blocks, helping us make full use of 32 SIMD
registers, and reducing pipeline bubbles.

4.2.2 TRSM kernel design. The TRSM kernel design is more com-
plicated. We divide the TRSM kernel design into two cases. One is
that matrix A can be put entirely into the register, and the other is
that matrix A needs to be divided into blocks.

For a particularly small-scale TRSM problem, matrix A can all
be placed in registers. In this case, it is possible to iterate through
the columns of matrix B to reuse matrix A. In this case, M(]\;[+1)
vector registers are needed to store matrix A. Similar to the GEMM
optimization idea, considering the "ping-pong" operation, 2M vector
registers are needed to store the B, and 2M + w <32.SoM
is up to 5, that is, when M < 5, all matrix A can load into the SIMD
register, and the column of matrix B is calculated in loops. Algorithm
4 shows the triangular kernel of TRSM. Depending on the matrix
size, it can generate corresponding high-performance triangular
kernels. Lines 1-3 show that it loads all matrix A into registers.
Specifically, each row of A is placed in the register set Amy¢gs. The
4-10 lines calculate one column of B at a time. These operations
are vectorized. Finally, it stores the result to X at line 10, which
will replace matrix B. Similar to GEMM, we apply the "ping-pong"
operation for lines 4-10 in Algorithm 4 in our implementation.

Algorithm 4: Simplified triangular kernel of compact
TRSM
Input: pA: M x M,pB: MX N
Output: X
1 form=0—-M-1do
2 LOAD Amyegs < pAlrow m]
3 /*Load row m of pA into register set Amyegs™/

4 forl=0—>N-1do
5 LOAD Byegs < pB[l x M]
6 fori=0—-> M-1do

7 forj=0—>i—-1do
8 L Bregs[i] — FMS(Bregs[j]’Airegs[j])
9 Byregs[i] < FMUL(Bregs[i]’Airegs[i])

10 | STORE Begs — X[column I]

For the case that the matrix A can not be stored in the register.
It can be seen from Formula 1 that the TRSM computing kernel can
be divided into two parts: the triangular computing kernel and the
rectangular computing kernel. Triangular computing kernels can be

Cunyang Wei, Haipeng Jia, Yunquan Zhang, Liusha Xu, and Ji Qi

generated directly using Algorithm 4. The rectangular computing
kernel should be redesigned to achieve optimal performance.

We redesign the rectangular computing kernel instead of calling
the GEMM kernel directly, since the GEMM kernel contains unnec-
essary computational overhead in this case. The rectangular block
multiplication of TRSM is a fixed-format GEMM, which is equiv-
alent to Alpha = —1 in GEMM. We replace the FMLA instruction
with the FMLS instruction to reduce M X N multiplications.

Xi= —Liij + B;j 4)

Direct calls to the GEMM kernel need M X M X N + M X N compu-
tation instructions. Therefore, the proportion of computing instruc-
tions we save is % For small matrices, it will reduce
the amount of computation by a large percentage.

Similar to GEMM, we also generate highly-optimized kernels
for all possible edge processing problems for TRSM. Table 1 shows
all TRSM rectangular kernels we defined in this paper. And all
triangular cases have been generated in the case mentioned above
when matrix A can all be placed in registers.

4.3 Kernel Optimization

The kernel optimizer obtains high-performance computing kernels
by optimizing instruction scheduling for all kernels. In the kernel
designer, several kernels of different sizes can be generated accord-
ing to the templates we abstract. However, a directly generated
kernel instruction pipeline is not optimal. We take the GEMM ker-
nel optimization as an example, and the TRSM kernel optimization
method is similar.

Our kernel optimizer optimizes kernels to minimize pipeline
blocking in instruction scheduling optimization. As shown in Fig-
ure 5, the original code shows TEMPLATE I in a 4 X 4 DGEMM
kernel generated by the kernel generator. The kernel optimizer will
first reorder the instructions so that there is a large enough gap
between two related instructions to element pipeline block. In the
second step, the load instruction is then inserted between the cal-
culation instructions so that the calculation instruction hides load
instruction delays. In addition, at the computation phase, matrix
A and B are already in the L1 cache, so no prefetching is needed.
Comparatively, matrix C is still in the memory, thus we use the
PRFM instruction of the ARM architecture to prefetch it at the
beginning of the computing kernel to eliminate the risk of cache
miss.

4.4 Packing Design

Under the SIMD-friendly data layout, the primary purpose of data
packing is to enable the computing kernel to continuously access
matrix A and matrix B. Similar to the mainstream BLAS library, we
adopt the strategy of N-shaped or Z-shaped data packing for the
matrix, as shown in Figure 6.

Compact batched GEMM packs matrix A and matrix B so that
the GEMM computing kernel memory access is continuous. Take
the NN mode as an example, we pack the matrix A into the N-shape
and the matrix B into the Z-shape. Under the SIMD-friendly data
layout, the data copied each time is at least the number of data that
fills the length of the SIMD vector, so we use the memcpy function
to minimize the overhead caused by data packing.

IATF: An Input-Aware Tuning Framework for Compact BLAS Based on ARMv8 CPUs

ldp g8, q9, [pB]

Idp ~q0, g1, [pA] ldp g8, a9, [pB] add

add pA, pA, #32 add pB, pB, #32 e zg' 518 [ﬁ?
ldp 42,93, [PA] ldp q0,q1, [PA] add pA, pA, #32
add PA, pA, #32 add PA, pA, #32 PR
Idp g4, a5, [pA] ldp g2, 93, [pA]
add pA, pA, #32 add pA, pA, #32 IT“' "126’23‘1’["(/)_\‘]2"' v8.2d
Idp g6, q7, [pAl Idp q10,q11, [pB] B A 4
add pA, pA, #32 add pB, pB, #32 foal 1720, vi 20, v8.2
Idp 98,99, [pB] Idp g4, a5, [PA] Idp q1o' q1’1 prj ’
add pB, pB, #32 add pA, pA, #32 AR Mt
ldp 10, q11, [pB] dp 12, q13, [pB] foul 2020, w02, va.20
add pB, pB, #32 add pB, pB, #32 fmul v21.2d. v1.2d. v9.2d
ldp q12,q13, [pB] ldp 66,97, [PA] fmul v18.2d, v2.2d, v8.2d
add pB, pB, #32 add pA pA #32 oG Ve e Qv

. hide the loadfmul v19.2d, v3.2d, v8.2d
ldp ~q14, 915, [pB] reordering !dP 914,915, [pB] . ion fmul v22.2d,v2.2d, v9.2d
add pB, pB, #32 add pB,pB,#32 instruction e vaod va

L) fmu v232d,13.2d,9.20

fmul v16.2d, v0.2d, v8.2d fmul v16.2d, v0.2d, v8.2d 1dp g4, 45, [PA]
fmul v17.2d, v1.2d, v8.2d fmul v17.2d, v1.2d, v8.2d add pA‘ DAY #32
fmul v18.2d, v2.2d, v8.2d fmul v20.2d, v0.2d, v9.2d ol onod vo2d. vi0.2d
fmul v19.2d, v3.2d, v8.2d fmul v21.2d, v1.2d, v9.2d ol v292d v1 24, vi1 24
fmul v20.2d, v0.2d, v9.2d fmul v18.2d, v2.2d, v8.2d Idp q12. q1’3 thj :
fmul v21.2d, v1.2d, v9.2d fmul v19.2d, v3.2d, v8.2d add B ’ B #'32
fmul v22.2d, v2.2d, v9.2d fmul v22.2d, v2.2d, v9.2d ol 26od a2 vi0.2d
fmul v23.2d, v3.2d, v9.2d fmul v23.2d, v3.2d, v9.2d fmul v31.2d’ v3‘2dy v11.2d
fmul v24.2d, v0.2d, v10.2d fmul v24.2d, v0.2d, v10.2d o asar A
fmul v25.2d, v1.2d, v10.2d fmul v29.2d, v1.2d, v11.2d ad oA oA 32
fmul v26.2d, v2.2d, v10.2d fmul v26.2d, v2.2d, v10.2d ol oD vt 2d vio.2d
fmul v27.2d, v3.2d, v10.2d fmul v31.2d, v3.2d, v11.2d e v28 94 v0 24 vi1 24
fmul v28.2d, v0.2d, v11.2d fmul v25.2d, v1.2d, v10.2d p 4. qis pB]
fmul v29.2d, v1.2d, vi1.2d fmul v28.2d, v0.2d, v11.2d aod bbb, 835
fmul v30.2d, v2.2d, v11.2d fmul v27.2d, v3.2d, v10.2d e o a2 v10.2d
fmul v31.2d, v3.2d, v11.2d fmul v30.2d, v2.2d, v11.2d -2d, v3.2d, v10.

fmul v30.2d, v2.2d, v11.2d

Figure 5: The kernel optimizer optimizes the DGEMM 4 x 4
TEMPLATE_I generated by the computing kernel generator
into a better instruction placement.

7 =7
£ 5
/ e

; .

4
i
H
H
I
7
F
o
.......... i I
¥
H
H
7
i
7
;
7
1

(a) N-shape (b) Z-shape (c) Triangular matrix data

packing

Figure 6: Data packing strategies.

Compact batched TRSM packs the triangular part of matrix
A and the entire matrix B so that the TRSM computing kernel
has continuous access to matrices A and B. Take the case of left,
lower, no-transpose, non-unit diagonal as an example. Note that,
the calculation of each row of matrix X depends on the results
of all the rows above its column. So matrix A needs an N-shaped
data pack, so that when the Nth row of the matrix A is read, the
operations involved in the first N rows have been calculated. In
addition, to store more data in the L1 cache, we only pack the data
for the triangular part of the matrix A.

Note that the diagonal elements use division and the other use
multiplication. Considering the long delay of division instructions
under the ARM architecture, when packing matrix A, the diagonal
part is stored as its reciprocal(%).

For matrix B, the calculation formula for each column is exactly
the same. Therefore we consider N-shaped copy of B, which means
that it iterates on the column, and A can be reused.

ICPP °22, August 29-September 1, 2022, Bordeaux, France

No-packing strategy is applied in cases where the expensive
data packing overhead of small matrices can be saved, and the per-
formance improvement of this strategy for small matrix operations
is significant. Specifically, the purpose of data packing in this paper
is to enable the computing kernel to access matrices continuously,
so it is unnecessary to pack matrices that can be accessed sequen-
tially even if they are not packed. For example, for GEMM under
NN mode, when M does not exceed the size of the computing kernel
design, matrix A is accessed rows by rows. For TRSM under LNLN
mode, when M does not exceed the size of the computing kernel
design, the packing of matrix B can be skipped.

The pack selector in the run-time stage of our auto-tuning frame-
work looks for opportunities to choose a no-packing strategy as
much as possible, to reduce the potentially expensive cost of data
packing.

5 THE DESIGN OF RUN-TIME STAGE

The run-time stage is to select the optimal computing kernel and
data packaging kernel generated at the install-time stage according
to the input parameters, to form an optimal execution plan.

5.1 Batch Counter

The batch counter decides the number of the matrix for computing
each time at the run-time stage according to matrix size(M, N, K) ,
datatype, and the L1 cache size. The batch processing problem we
study is mainly aimed at the fact that it can be completely stored in
the L1 cache, and the data between the matrices are not related. The
batch counter needs to ensure the matrix is always in the L1 cache
throughout the computation. For GEMM, pack matrices A and B
up to the size of L1 cache at a time and reserve space for matrix C.
For TRSM, pack matrices B and the triangle part of matrices A up
to the size of L1 cache at a time.

5.2 Pack Selecter

At this stage, it chooses the optimal data packing kernel to match
the computing kernel according to the data type and matrix proper-
ties. It matches appropriate data packing kernels for different modes
to pack matrices into the same order, so that only one computa-
tional kernel is needed to handle all modes. Computation kernels
are specially designed for matrices of different sizes, so it further
selects data packing kernels based on the matrix size. In order to
minimize memory access overhead, it only chooses data packing
when the data cannot be continuously accessed in the computing
core, otherwise it will choose no packing strategy.

5.3 Execution Plan Generator

The execution plan generator chooses the optimal computing ker-
nel, and combines the data packing kernel provided by the data
packing selector and the cache strategy of the batch counter to
form the execution plan. In terms of computing kernel selection, it
selects the most matching computing kernel according to the in-
put scale, which is the optimal choice for instruction arrangement
under this scale. Furthermore, this choice is strictly matched to
the data packing kernel. Finally, it generates a high-performance
execution plan, which means a set of command queues, for large
groups of small GEMM and TRSM. By executing these command

ICPP °22, August 29-September 1, 2022, Bordeaux, France

20000 ATE Sgemm 8000
18000\ ARMPL batch o 70001
» 16000 | . OpenBLAS -t 1 g 6000 |-
2 14000 |—— LIBXSMM batch|/*** 1 O 5000l
o 12000 ! iz
= 10000 | A ‘JX,. { = 4000
8000} 7 o N 3000/
6000} /7 1 [
4000f 2000
/ 1000
2000} /% f}‘*/

Cunyang Wei, Haipeng Jia, Yunquan Zhang, Liusha Xu, and Ji Qi

: _Cgemm 10000 _Zgemm__
25000
1 8000 e
1) 1]
20000} 1 ja
15 2 5 vt A
e Pl o 6000 a NG
1 15000} g 1z Va N
= 7 NA) Al VA4
10000} '/r \/:/\;\;/« 4000 + / /7N
’ &
5000 _/[/‘(;:{“‘/ 2000 ,/
Al ol
0

0 i N P S T S A I
0 3 6 9 12151821 24273033

M=N=K

0 3 6 9 121518212427 3033
M=N=K

M=N=K

0 it i i i i i i i i i i
0 3 6 9 12151821 24273033

M=N=K

Figure 7: Performance of the JATF compact GEMM compared with ARMPL, LIBXSMM, and OpenBLAS under the NN mode .

Table 2: Experimental environments

CPU Kunpeng 920 Intel Xeon Gold 6240
Peak perf. (FP64) 10.4GFLOPS 83.2GFLOPS
Peak perf. (FP32) 41.6GFLOPS 166.4GFLOPS
Arch. ARMv3.2 Cascade Lake
Freq. 2.6GHz 2.6GHz
SIMD 128 bits 512 bits

L1D cache 64KB 32KB

L2 cache 512KB 1024KB
Compiler GCC7.5 GCC7.5

Intel oneAPI MKL - 2022.0.2
ARMPL 22.0 -

LIBXSMM 1.17 -

OpenBLAS 0.3.13 -

queues, we are able to compute compact batched GEMM/TRSM
with high performance.

For large groups of matrix batch operations, the run-time stage
overhead is not significant, since it only generates this execution
plan at the beginning. Therefore these overheads are negligible
when apportioned to each matrix.

6 EXPERIMENTS EVALUATION

We evaluate the IATF on the kunpeng 920 processor based on
ARMv8 architecture. We also selected the Intel Xeon Gold 6240
CPU to test and evaluate the MKL compact BLAS. Our experiments
found that the Intel Xeon Gold 6240 CPU was instable in perfor-
mance when overclocked. Therefore, we adjusted the frequency to
the processor’s base frequency which is 2.6GHz. This adjustment
has little effect on the experimental results, because we compare
with Intel as a percentage of peak performance. Table 2 shows the
specifications of the two processors. The performance tests used in
this article are compiled with the GCC7.5 compiler with the "-O3
-g" option.

We compare the IATF with three BLAS libraries optimized for the
ARMv8 architecture, among which OpenBLAS is the most widely
used open-source BLAS library in the industry. ARMPL is the official
performance library for ARM architecture. LIBXSMM is optimized
for small matrices. Furthermore, ARMPL and LIBXSMM also sup-
port batch GEMM interface. We also evaluate the performance of

the Intel MKL library, which is Intel’s official performance library,
which can provide excellent performance on Intel platform, and
support compact BLAS interface. We run each kernel 100 times and
take the geometric mean as the final result.

To fully demonstrate each kernel, we evaluate the performance
of square matrices of sizes 1 — 33 for each function. The batch size
is 16384. We refer to the general testing scheme [13] to initialize
the matrix by filling it with random floating-point numbers (0 to 1).
We evaluate the performance under different datatype and different
modes.

6.1 Compact GEMM

Figure 7 demonstrates our strong performance of the compact
batched GEMM for real/complex numbers in single-precision or
double-precision under the NN mode. We compared the IATF with
the ARMPL batched GEMM(ARMPL batch), LIBXSMM batched
GEMM, and loop around OpenBLAS library calls for GEMM. As
shown in Figure 7, when the size of sgemm is less than 30 and the
size of dgemm is less than 18, we can achieve great performance
improvement compared with other libraries. In complex mode, the
speedup is even more pronounced. For the sgemm, dgemm, cgemm,
and zgemm, compared to looping calls to the OpenBLAS GEMM
interface, the IATF can provide up to 21x, 7x, 12x, and 6x speedups
respectively. Compared to the ARMPL batched GEMM, the IATF
achieves up to 8x, 4x, 8x, and 5x speedups for the four data types.
LIBXSMM is optimized for small matrix multiplication, but it does
not support a complex interface. At some scales, it shows advan-
tages, but at particularly small scales, the IATF still provides up to
5x speedup for sgemm and up to 2x speedup for dgemm.

Figure 8 shows the performance comparison in NN, NT, TN, and
TT modes for sgemm, dgemm, cgemm, and zgemm. It demonstrates
that we can provide excellent and stable performances in every
mode. In addition, we also demonstrate significant performance
advantages under NT, TN, and TT modes of sgemm, dgemm, cgemm,
and zgemm, compared to ARMPL, LIBXSMM, and OpenBLAS.

6.2 Compact TRSM

Figure 9 demonstrates our very impressive performance of the
TRSM for real/complex numbers in single-precision or double-
precision under LNLN(Left, Non-Transpose, Lower, NonUnit) mode.
We compared the IATF with the loop around ARMPL library calls
for TRSM and the loop around OpenBLAS TRSM calls. In TRSM

IATF: An Input-Aware Tuning Framework for Compact BLAS Based on ARMv8 CPUs ICPP °22, August 29-September 1, 2022, Bordeaux, France

Sgemm_compact 8000 [~ PESMM-COMPACt Cgemm_compact Zgemm_compact

: : — 10000 —
20000 []
18000 25000 ool 7
© 16000 | TN : 9 20000/ 18
& 14000 ——TT] o] o]
12000 150001] & 6000} 1
= 10000} 1= =
8000] 100001 1 4000} |
6000 |]
4000}] 5000 |/ | 2000 / 1
2000]
o] O P Y O
0 3 6 9 121518 21 24 27 30 33 0 3 6 9 1215182124273033 0 3 6 9 121518 21 24 27 30 33 0 3 6 9 121518 21 24 27 30 33
M=N=K M=N=K M=N=K M=N=K

Figure 8: Performance of Compact GEMM under the NN, NT, TN, and TT modes.

Dtrsm Ztrsm
14000 e SUSM 6000 . Csm sl T T T LTI
—— IATF b 1 [
12000 A1 5000t A\ 10000 b
ARMPL AN o AN Ao
§100007+ OpenBLAS R ’,/\,,/J Y] %40007),\x*/\'/] g 8000 - f{,_./" 1 %4000*
e [o 1 gl] /«/ T L
L 8000 ol S 3000t pod 15 6000 = 1 53000
6000 - Va N A /\//\J\ Vl
e | o 1 2000}
4000} /’j | 2000F -/)5 | 4000 //' A /\,,J\J»/\,
2000} /\.J\~f | 1000f / ,/'\v/\r] 20000 N Y | 1000}
B o Assii W /Y /
0 T Ies SN IR TN 0 S Y P ST SO S 0 O N S N SV S R 0 P N O S A R AU N R
03 6 9 1215182124273033 0 3 6 9 12151821 24 27 30 33 03 6 9 12151821 24273033 0 3 6 9 12151821 24 27 30 33
M=N=K M=N=K M=N=K M=N=K

Figure 9: Performance of the IATF compact TRSM compared with ARMPL, and OpenBLAS under the LNLN mode.

Strsm_compact 6000 Dtrsm_compact Ctrsm_compact 6000 —r—r2trsm_compact
12000 [[—— LNLN 5000
—— LNUN r
©» 100001 . 1IN i o, 10000 1o
o o
o ——LTUN G 4000 o) G 4000
g 8000 1 e T
= 3000 s
= 6000}] = 5000
4000] 2000 2000 -
2000 - 1000 -
0 L L L L L L L L L L L 0 L L L L L L L L L L L 0 L L L L L L i i i i i O L L L L L L L L Il Il Il
03 6 9 1215182124273033 0 3 6 9 12151821 2427 30 33 03 6 9 12151821 24273033 0 3 6 9 12151821 24 27 30 33
M=N=K M=N=K M=N=K M=N=K
Figure 10: Performance of Compact TRSM under the LNLN, LNUN, LTLN, and LTUN modes.
Sgemm_compact Dgemm_compact Cgemm_compact Zgemm_compact
8 50% = g oA g_ LU L S g 60% 4 LAULULEAL L 8 90% -gemm_compact,
e \ATF 270 % - 1€] G 80% A
E 40%| MKL_compact A = 60% | M"""\,/', € 50% A g pran
5 0% NN § 5% ol 5 e 5 70% o ’
s ot S 50% | s | G40%+ Ve 1 G 60% | s 4
S.30% | ~ ja o S §a S oo #
4 ot ~rr| @ 40% ol 1 2 30% P | @o0%r 1
S / ~" 15 / S y C40%L - /]
220% | - e Dao% St Q0%
T SUE PN B | 20% {1Z30%f / 1
8 10% g20% Ji I s g s S 20%] /]
o[7 v o/ | 4
g 310%7/,%,, | Sro% y/ 310%7/]
°\° O% L L L L L L L L L L L c\Q 00/0 L L L L L L L L L L L °\° % L L L L L L L L L L L o\c o% L L L L L L L L L L L
0 3 6 9 12151821 24273033 0 3 6 9 12151821 2427 30 33 03 6 9 12151821 242730 33 0 3 6 9 12151821 242730 33
M=N=K M=N=K M=N=K M=N=K

Figure 11: Performance of the IATF compact GEMM compared with the Intel MKL compact GEMM mode was evaluated using
the percentage of peak processor performance as a benchmark under the NN.

ICPP °22, August 29-September 1, 2022, Bordeaux, France

Dtrsm_compact

Cunyang Wei, Haipeng Jia, Yunquan Zhang, Liusha Xu, and Ji Qi

Ctrsm_compact

Ztrsm_compact

§ 60% ——— T § 25% T R § 5% T T
© @ at or
E50% AN E20% ~] E 7
S AN S i S 40% |- o
€ A © > 2 40% -
© 40% R @ / o) .
o A S 15% 7 = el
0 Vad] e 0 30% e
a ¥ a 30% o o P 8 P
S 15% ,7\;,‘/&. A 19 A S 10%| 4 et S| o
L i L 20% s SN E LT i 20% 5
FRM /A 1% / T S 3 4
g A 8100l jreT 8 s 1 8109 mebeet]
o 5% /\/ 1o 7" ovand o ':‘/ o /e T
i) ' 2 - L /A B /;;f
o\° 0% }\ L L L L L L L L L L °\° OO/D L L L L L L L L L L L °\° % P L L L L L L L L L L °\° 0% L L L L L L L L L L L
03 6 9 12151821 242730 33 0 3 6 9 12151821 24273033 03 6 9 12151821 24273033 03 6 9 12151821 24273033
M=N=K M=N=K M=N=K M=N=K

Figure 12: Performance of the IATF compact TRSM compared with the Intel MKL compact TRSM mode was evaluated using
the percentage of peak processor performance as a benchmark under the LNLN.

case, we can see that the IATF achieves extremely large improve-
ments for all sizes and all data types. The IATF is 28x, 12x, 10x, and
5x faster than looping calls to the OpenBLAS TRSM interface for
the strsm, dtrsm, ctrsm, and ztrsm respectively. Compared to the
loop around ARMPL TRSM calls, our implementation achieves up
to 7x, 5%, 4x, and 3x speedups for the four data types. In this case, we
do not compare with LIBXSMM as the TRSM is not available in the
LIBXSMM library. Figure 10 shows that the IATF achieves nearly
consistent high performance with the left side mode. The perfor-
mance in other modes compared with OpenBLAS and ARMPL also
shows that the IATF has significantly high performance.

6.3 Evaluation with Intel MKL

We use the percentage of processor peak performance as a bench-
mark to evaluate Intel MKL compact GEMM/TRSM for reference.
As shown in Figure 11, We achieve significant advantages on double-
precision floating-point numbers, both for real and complex. Note
that Kunpeng 920 CPU can only issue one memory access instruc-
tion and one calculation instruction at the same time, or simul-
taneously issue two calculation instructions for single-precision
floating-point numbers. In single precision, our advantage is not
apparent. However, when the scale is larger, the computational
instructions take up a higher percentage, and our optimization
approach is reflected.

As shown in Figure 12, We show considerable advantages in
double-precision floating-point numbers, both for real and com-
plex. On the one hand, the division instruction cycle of the ARM
architecture is more than that of the X86 architecture. On the other
hand, as mentioned above, the dual-issue problem of the Kunpeng
920 platform we tested, combined to cause the poor performance
of TRSM in single precision. However, we still get an advantage for
the cgemm when the size is greater than 9 and for the sgemm when
the size is greater than 12. This fully demonstrates the effectiveness
of our kernel design and optimization.

7 CONCLUSION

This paper presents IATF, an input-aware tuning framework for
compact batched GEMM/TRSM. It consists of two parts, the install-
time stage and the run-time stage. The install-time stage generates
and optimizes the computing kernel and data packing kernel based
on SIMD-friendly data layout for ARMv8 architecture. The run-time

stage chooses optimal kernels to generate an optimal execution
plan according to the input matrix properties. Compared with other
mainstream BLAS libraries, our implementation shows performance
advantages in both GEMM and TRSM.

In the future, we will focus on the kernel design and optimization
of other BLAS functions under the SIMD-friendly data layout. In
addition, we would investigate and extend our approach to multi-
core CPU and GPU in the future.

ACKNOWLEDGMENTS

The authors would like to thank all the reviewers for their insightful
and valuable comments and suggestions. This work is supported
by National Natural Science Foundation of China under Grant No.
61972376, No. 62072431, No. 62032023.

REFERENCES

[1] [n.d.]. ARM PERFORMANCE LIBRARIES. https://developer.arm.com/tools-and-
software/server-and-hpc/compile/arm-compiler- for-linux/arm-performance-
libraries

[n.d.]. Intel oneAPI Math Kernel Library. https://www.intel.com/content/www/
us/en/developer/tools/oneapi/onemklhtml

[n.d.]. OpenBLAS:An optimized BLAS library. http://www.openblas.net/
Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. 2016.
Performance, design, and autotuning of batched GEMM for GPUs. In International
Conference on High Performance Computing. Springer, 21-38.

Tal Ben-Nun and Torsten Hoefler. 2019. Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis. ACM Computing Surveys
(CSUR) 52, 4 (2019), 1-43.

Jean-Guillaume Dumas, Clément Pernet, and Jean-Louis Roch. 2006. Adaptive
triangular system solving. In Challenges in Symbolic Computation Software. 770.
Gianluca Frison, Dimitris Kouzoupis, Tommaso Sartor, Andrea Zanelli, and Moritz
Diehl. 2018. BLASFEO: Basic linear algebra subroutines for embedded optimiza-
tion. ACM Transactions on Mathematical Software (TOMS) 44, 4 (2018), 1-30.
Gianluca Frison, Tommaso Sartor, Andrea Zanelli, and Moritz Diehl. 2020. The
BLAS API of BLASFEO: Optimizing performance for small matrices. ACM Trans-
actions on Mathematical Software (TOMS) 46, 2 (2020), 1-36.

Kazushige Goto and Robert A van de Geijn. 2008. Anatomy of high-performance
matrix multiplication. ACM Transactions on Mathematical Software (TOMS) 34, 3
(2008), 1-25.

Kazushige Goto and Robert Van De Geijn. 2008. High-performance implementa-
tion of the level-3 BLAS. ACM Transactions on Mathematical Software (TOMS) 35,
1(2008), 1-14.

Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst. 2016.
LIBXSMM: accelerating small matrix multiplications by runtime code genera-
tion. In SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 981-991.

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. 2018. Matrix capsules with
EM routing. In International conference on learning representations.

Zhen Jia, Aleksandar Zlateski, Fredo Durand, and Kai Li. 2018. Optimizing
N-dimensional, winograd-based convolution for manycore CPUs. In Proceed-
ings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel

[2

[12

(13

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/arm-performance-libraries
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/arm-performance-libraries
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/arm-performance-libraries
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
http://www.openblas.net/

IATF: An Input-Aware Tuning Framework for Compact BLAS Based on ARMv8 CPUs

Programming. 109-123.

[14] Kyungjoo Kim, Timothy B Costa, Mehmet Deveci, Andrew M Bradley, Simon D
Hammond, Murat E Guney, Sarah Knepper, Shane Story, and Sivasankaran Raja-
manickam. 2017. Designing vector-friendly compact BLAS and LAPACK kernels.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1-12.

[15] Grzegorz Kwasniewski, Marko Kabi¢, Maciej Besta, Joost VandeVondele, Raffaele
Solca, and Torsten Hoefler. 2019. Red-blue pebbling revisited: near optimal parallel
matrix-matrix multiplication. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 1-22.

[16] Haidong Lan, Jintao Meng, Christian Hundt, Bertil Schmidt, Minwen Deng,
Xiaoning Wang, Weiguo Liu, Yu Qiao, and Shengzhong Feng. 2019. FeatherCNN:
Fast inference computation with TensorGEMM on ARM architectures. IEEE
Transactions on Parallel and Distributed Systems 31, 3 (2019), 580-594.

[17] Tyler M Smith, Robert Van De Geijn, Mikhail Smelyanskiy, Jeff R Hammond, and
Field G Van Zee. 2014. Anatomy of high-performance many-threaded matrix
multiplication. In 2014 IEEE 28th International Parallel and Distributed Processing
Symposium. IEEE, 1049-1059.

[18] Field G Van Zee and Robert A Van De Geijn. 2015. BLIS: A framework for rapidly

instantiating BLAS functionality. ACM Transactions on Mathematical Software

[19

[20

[21

[23

]

ICPP °22, August 29-September 1, 2022, Bordeaux, France

(TOMS) 41, 3 (2015), 1-33.

Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. 2013. AUGEM: automat-
ically generate high performance dense linear algebra kernels on x86 CPUs. In
SC’13: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE, 1-12.

Bartosz D Wozniak, Freddie D Witherden, Francis P Russell, Peter E Vincent, and
Paul HJ Kelly. 2016. GiMMiK—Generating bespoke matrix multiplication ker-
nels for accelerators: Application to high-order Computational Fluid Dynamics.
Computer Physics Communications 202 (2016), 12-22.

Jing Xia, Chuanning Cheng, Xiping Zhou, Yuxing Hu, and Peter Chun. 2021.
Kunpeng 920: The First 7-nm Chiplet-Based 64-Core ARM SoC for Cloud Services.
IEEE Micro 41, 5 (2021), 67-75.

Zhang Xianyi, Wang Qian, and Zhang Yunquan. 2012. Model-driven level 3
BLAS performance optimization on Loongson 3A processor. In 2012 IEEE 18th
international conference on parallel and distributed systems. IEEE, 684-691.
Weiling Yang, Jianbin Fang, Dezun Dong, Xing Su, and Zheng Wang. 2021.
LIBSHALOM: optimizing small and irregular-shaped matrix multiplications on
ARMv8 multi-cores. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis. 1-14.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Traditional GEMM Algotithm
	2.2 Traditional TRSM Algorithm
	2.3 Batch BLAS and Small-Sized BLAS

	3 Overview of input-aware tuning Framework
	4 The Design of Install-Time Stage
	4.1 SIMD-friendly Data Layout
	4.2 Kernel Design
	4.3 Kernel Optimization
	4.4 Packing Design

	5 The Design of Run-time stage
	5.1 Batch Counter
	5.2 Pack Selecter
	5.3 Execution Plan Generator

	6 Experiments Evaluation
	6.1 Compact GEMM
	6.2 Compact TRSM
	6.3 Evaluation with Intel MKL

	7 CONCLUSION
	Acknowledgments
	References

