JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

IrGEMM: An Input-Aware Tuning Framework for
Irregular GEMM on ARM and X86 CPUs

Cunyang Wei, Haipeng Jia, Yunquan Zhang, Senior Member, IEEE, Jianyu Yao, Chendi Li , Wenxuan Cao

Abstract—The matrix multiplication algorithm is a fundamental numerical technique in linear algebra and plays a crucial role in many
scientific computing applications. Despite the high performance of mainstream basic linear algebra libraries for large-scale dense
matrix multiplications, they exhibit poor performance when applied to matrix multiplication with irregular input. This paper proposes an
input-aware tuning framework that accounts for application scenarios and computer architectures to provide high-performance irregular
matrix multiplication on ARMv8 and X86 CPUs. The framework comprises two stages: the install-time stage and the run-time stage.
The install-time stage utilizes our proposed computational template to generate high-performance kernels for general data layout and
SIMD-friendly data layout. The run-time stage utilizes a tiling algorithm suitable for irregular GEMM to select the optimal kernel and link
as an execution plan. Additionally, load-balanced multi-threaded optimization algorithms are defined to exploit the multi-threading
capability of modern processors. Experiments demonstrate that the proposed IrGEMM framework can achieve significant performance
improvements for irregular GEMM on both ARMv8 and X86 CPUs compared to other mainstream BLAS libraries.

Index Terms—batch GEMM, compact GEMM, TSMM, code generation.

1 INTRODUCTION

ECENTLY the mainstream basic linear algebra libraries
R(BLAS) have delivered near-peak high performance
on large-scale General Matrix Multiplication (GEMM). The
definition of GEMM is given in Equation 1:

aAB +BC =C 1)

where A, B, and C are M x K, K x N and M x N
matrices, respectively. Traditional approaches have proven
inadequate in achieving optimal performance for a number
of modern applications, such as metabolic networks [1],
PDE-based simulations [2], tensor shrinkage for finite ele-
ment simulations [3], and image processing [4]. The high
computational demands of these applications necessitate
efficient methods for irregular matrix multiplication. In this
regard, We summarize the irregular matrix multiplication
into three types including compact GEMM, batch GEMM,
and TSMM (Tall-and-Skinny Matrix-Matrix Multiplication).
A typical example of batch GEMM and compact GEMM is
given in Equation 2:

o; A; By + B:Ci=C;,i=0— L 2)

where L is large, but A4;, B;, and C; are small matrices that
VMNEK < 80. Compact GEMM, which based on SIMD-
friendly data layout, refers to the case where all matrices are
the same size, and Batch GEMM refers to the case of dealing

o C. Wei, |. Yao, C. Li, and W. Cao is with the Institute of Computing
Technology, Chinese Academy of Sciences, Beijing 100864, China, the
University of Chinese Academy of Sciences, Beijing 100049, China.
E-mail: weicunyang20g@ict.ac.cn,

{yaojianyu89, lichendi.cs }@gmail.com, caowenxuan22@mails.ucas.ac.cn.

o H. Jia and Y. Zhang are with the State Key Lab of Processors, Institute
of Computing Technology, Chinese Academy of Sciences, Beijing 100864,
China.

E-mail: {jiahaipeng, zyq}@ict.ac.cn.

Manuscript received April 19, 2005; revised August 26, 2015.
(Corresponding author: Haipeng Jia.)

with several groups of matrices in which the matrices within
the group have the same properties while each group of
matrices has a different properties. Besides, TSMM refers to
the case where one of the input matrices (either A or B) is
a tall-and-skinny matrix (i.e., one dimension is significantly
smaller than the other).

Many previous studies have delivered near-peak high
performance on dense GEMM by using the three-step pro-
cess: tiling, packing, and computing. The tiling phase di-
vides the matrix into smaller blocks based on computer
architecture characteristics, such as TLB and cache size,
in order to maximize cache locality. The packing phase
then arranges the matrix data into small blocks in lin-
ear buffers, allowing the computational kernel to access
memory continuously and reducing memory access latency.
Additionally, different transpose patterns can be achieved
simply by adjusting the packing order, rather than rewriting
the kernel, which reduces the workload. Data packing is
especially important for large-scale dense matrices as it can
significantly reduce cache miss and TLB miss overhead.
The computing step uses high-performance kernels with
boundary processing to perform matrix multiplication.

However, the traditional method is not effective in op-
timizing irregular matrix multiplication. In terms of the
commonality of irregular matrix multiplication, there are
several main reasons. First, tiling based on L2 Cache size is
not applicable to small-scale matrices, since small matrices
can all be placed entirely in the L2 cache. Besides, the tra-
ditional tiling approach will introduce many boundaries on
irregular GEMM problems and the overhead from bound-
ary handling is not negligible. Second, the data packing
overhead accounts for a large proportion of the small-scale
matrix multiplication problem, which makes data packing
no longer advantageous. On the contrary, it brings more per-
formance loss in terms of access storage overhead. Thirdly,
traditional methods can often attain remarkable perfor-

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

mance on large-scale dense matrix multiplication problems
by utilizing a handful of meticulously optimized master
kernels, since the majority of computations can be executed
via these kernels. Conversely, in the case of irregular matrix
multiplication, the bounds of computational scale occupy
a substantial portion of the overall computational scale,
necessitating a multitude of kernels with various sizes to
tackle the possible boundary cases and attain high perfor-
mance across different scales that irregular GEMMs may
encounter. Forth, traditional methods lack an input-aware
tuning framework to generate high-performance execution
plans for irregular GEMM of different sizes.

Additionally, for each specific irregular GEMM type,
there are additional problems that limit the performance of
irregular matrix multiplication. For batch GEMM, different
groups contain different size of matrices, which makes
load-balanced task scheduling necessary to exploiting the
multi-core performance of modern processors. For compact
GEMM, Traditional approach lacks a data layout that can
fully utilize the width of the SIMD registers. For TSMM, ma-
trix data reuse is often required in deep learning which is an
important application scenario of TSMM. But conventional
GEMM implementations cannot reuse matrices because the
packing operation and computing operation are coupled.

To summarize, the efficacy of the implementation of ir-
regular GEMM is not only limited by the computer architec-
ture but also limited its diverse application scenarios. This
paper presents rGEMM, an input-aware tuning framework
to optimize irregular GEMM on ARMvS and X86 CPUs. It
consists of two stages, the install-time stage and the run-
time stage.

In the install-time phase, we propose a template based
code generation method, which to the best of our knowl-
edge is the first comprehensive code generation method for
irregular matrix multiplication. We analyze the GEMM com-
putational characteristics for each irregular GEMM type and
carefully analyze the benefits and overheads of data pack-
aging. We extracted these typical computational patterns
as computational templates. These computation templates
were then used by the kernel generator to generate ker-
nels containing "ping-pong” operations. Subsequently, the
instruction mapping rules and the assembly template opti-
mizer convert the generated kernels into high-performance
assembly GEMM kernels for different architectures.

In the run-time stage, We propose an input-aware tiling
algorithm to minimize memory accesses in irregular matrix
multiplication and to prevent the generation of very small
blocks. Based on this tiling algorithm, we selects the optimal
kernels and combines them into an execution plan, which is
saved in the form of a command queue. For batch GEMM,
we also propose a load-balanced multithreaded optimiza-
tion framework which divides the large matrix group into
smaller task blocks and achieves optimal multithreaded
performance through dynamic mapping between threads
and command queues.

In this study, we demonstrate the effectiveness of our
proposed irregular GEMM optimization techniques on the
ARMvVS8 and X86 AVX512 architectures. The results of our
experiments indicate that IrGEMM outperforms existing
state-of-the-art approaches, including LIBXSMM [5], ARM
Performance Library (ARMPL) [6], Intel OneAPI Math Ker-

nel Library (MKL) [7], BLIS [8], and OpenBLAS [9].
The key contributions and innovations of this paper are
summarized as follows:

e We present a performance tuning framework that
considers both the characteristics of the target ap-
plication scenarios and the features of the com-
puter architecture. The framework also includes
a load-balanced multithreaded scheduling strategy
for batch processing problems, which allows it to
fully utilize the capabilities of multicore processors.
We demonstrate the effectiveness of the framework
through three irregular GEMM types involving ir-
regular matrix multiplication, showing that it can
generate efficient execution plans that consistently
achieve high performance across various scales and
matrix characteristics.

e We present a template-based code generation
method that generates highly optimized assembly
kernels for diverse irregular GEMM types based on
ARMvVS and X86 CPUs. Furthermore, we propose
an input-aware tiling algorithm to generate optimal
kernel combination strategies, thereby ensuring con-
sistent high performance at any matrix scale.

e Based on our proposed framework, we have imple-
mented a high-performance irregular matrix multi-
plication library for ARMv8 and Intel cascade Lake
architectures. The experimental results demonstrate
that the performance of IrGEMM surpasses that of
the mainstream BLAS libraries in the three types of
computations that encompass irregular matrix mul-
tiplication, includes Batch GEMM, Compact GEMM,
and TSMM, based on the ARMv8 and X86 ar-
chitectures. The aforementioned improvements of
IrGEMM'’s performance signify a noteworthy ad-
vancement in the field of irregular matrix multi-
plication, as I'GEMM offers superior computational
efficiency in comparison to the commonly employed
BLAS library.

This paper builds upon the conference versions [10], [11],
[12], [13] by: 1) enhancing the generality of the framework
to handle a wider range of irregular matrix multiplication
application scenarios; 2) adding experimental results for the
port of I'GEMM to Intel cascade Lake CPUs; 3) refining the
tiling algorithm to minimize memory access while consid-
ering the algorithm’s complexity; and 4) providing a de-
tailed description of the implementation and optimization
techniques used in irregular GEMM code generation. These
additions serve to further elaborate upon and strengthen the
findings presented in the conference versions.

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 describes the overview
of the I'GEMM. Section 4 elaborates on the design of the
install-time stage. Section 5 describes the design and imple-
mentation details of the run-time stage. Section 6 presents
the performance evaluation of our methods. Finally, Section
7 concludes this paper with future work.

2 RELATED WORK

Many GEMM algorithms [5], [14], [15], [16], [17], [18] have
been proposed to compute the dense GEMM, small GEMM,

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

compact GEMM and batch GEMM. As the most popular
dense GEMM optimize method prposed by GOTO [14], [19],
is supported by most mainstream GEMM libraries. Batch
GEMM as a new subroutine of BLAS has been discussed
in a more comprehensive interface, and chased for multi-
threaded load balancing optimization. And since the com-
pact interface was proposed by intel, it is mainly aimed at
optimizing under SIMD-friendly data layout.

Nowadays, many libraries are optimized by vendors
or researchers to achieve high performance on specific
hardware architectures. Vendor-supplied high-performance
GEMM libraries (including ARMPL [6], Intel MKL [7]) are
properly optimized for specific architectures using (SIMD)
techniques, and have been fine-tuned for optimal per-
formance on specific microarchitectures. However, these
vendor-specific libraries cannot be easily ported to proces-
sors from other vendors. To address this issue, several auto-
tuning systems, including OpenBLAS, BLIS, and LIBXSMM,
have been developed by academia to provide comparable
performance to vendor-specific libraries.

In terms of the application scenarios for which irregular
matrix multiplication is oriented, there already have many
studies in the academic community, as follows:

2.1 Small GEMM

Small matrices pose a challenge for HPC systems because
modern processors are often designed to handle large-scale
data. This can make it difficult to fully utilize multi-level
cache structures and vector registers, which are key features
of modern SIMD architectures. In addition, the overhead
associated with data packing and boundary processing can
significantly impact the performance of GEMM operations.
These small GEMM characteristics prevent conventional
approaches from achieving optimal performance on small
GEMM. Designing a library without data packing steps and
boundary processing is necessary to achieve high perfor-
mance for small GEMM. LibShalom [17] proposes to overlap
the packing and computation of GEMM, which is imple-
mented by handwritten assembly code and distributes the
overall GEMM load rationally to each computing kernel of
the processor. LIBXSMM [5] uses the Just-in-time (JIT) code
compilation technique to generate assembly code for small
GEMMs. LIBXSMM uses code caching to reuse compilation
results to reduce the JIT overhead. BLIS treats small-scale
GEMM as part of a thin GEMM (skinny GEMM). BLIS
defines a thin GEMM as a GEMM as long as one dimension
of the input matrix is smaller. however, due to the imper-
fection of BLIS's tiling method and edge processing, and the
small-scale matrix, BLIS is unable to obtain the near-optimal
performance of a small-scale GEMM. However, due to the
imperfection of BLIS’s tiling method and edge processing,
and the small-scale matrix, BLIS cannot obtain the near-
optimal small-scale GEMM performance. These approaches
give us great inspiration. However, we still need to consider
how to load-balance the scheduling of these small GEMM
kernels on batch GEMM.

2.2 Batch GEMM and Compact GEMM

Batch operations are an effective means of handling a large
number of small matrices, as they allow for the efficient

3

processing of multiple matrices simultaneously. To optimize
batch GEMM operations, several approaches have been
proposed, including compact GEMM and batch GEMM. For
fixed sizes, the compact GEMM of the Intel MKL [16] uses
a SIMD-friendly data layout that fully uses SIMD registers.
IATF [11] proposes automatic tuning algorithms and code
generation methods for ARM architectures based on SIMD-
friendly data layouts. For variable size, the community has
proposed a standard interface for Batch BLAS [20]. Intel
MKL, ARMPL, BLIS, and other mainstream linear algebra
libraries support this interface. The main optimization of
batch GEMM focus on multi-thread load balancing. There
has been research comparing the performance of OpenMP
on batch processing problems with different strategies. The
results show that the group-based approach is an effective
way to handle variable batch GEMM [21]. In addition,
there is also a large amount of GPU-based batch GEMM
optimization research in the community [22], [23], which
provides ideas for the work in this paper.

2.3 TSMM

Highly thin matrix-matrix multiplication is one of the most
important irregular matrix-matrix multiplication methods,
which indicates that one of the input matrices (A or B) is
a highly thin matrix (one dimension is significantly smaller
than the other). Its widely used in applications such as deep
learning [24], [25] and Neural networks (NN) [26], [27].

Many deep learning frameworks, such as TensorFlow
[28] and OneDNN, rely heavily on convolutional layers,
which are implemented using GEMM. One popular tech-
nique for optimizing convolutional computation is the
image-to-column algorithm, which converts the convolution
operation into a GEMM operation in order to take advan-
tage of optimized linear algebra libraries such as BLAS.
However, the input sizes for GEMM operations can vary
greatly depending on the application, and are often irregular
in shape. In particular, convolutional kernels are often small
while the input images are large, leading to a highly thin
matrix-matrix multiplication problem. In some cases, the
input matrix may need to be reused multiple times.

There has been researches on TSMM, with various
vendors and researchers developing optimized implemen-
tations for different platforms. For example, Intel MKL
provides highly optimized TSMM on X86 platforms, and
Facebook has optimized TSMM [29] on its X86 processors
in its data center on NVIDIA GPUs. However, TSMM op-
timization methods have not been fully discussed. While
traditional optimization methods are also informative, the
most important issue is that traditional matrix-matrix mul-
tiplication does not support data reuse, which as men-
tioned above is key in optimizing TSMMs for this class
of applications. In addition, due to the small size of tall
and thin matrices in some dimensions, traditional matrix-
matrix multiplication implementations often only enable
suboptimal tiling algorithms

3 THE IRGEMM FRAMEWORK

This paper presents an input-aware tuning framework for
optimizing irregular GEMM on ARMvS8 and X86 CPUs. Al-
though we summarize the irregular GEMM into three types,

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

the framework we proposed is generic and can be tailored to
specific patterns through implementation. The framework
consists of the install-time stage and the run-time stage, as
illustrated in Figure 1, and aims to achieve near-optimal
performance for irregular GEMM. IrGEMM supports four
modes: N, T, R, and C, representing non-transposed, trans-
posed, conjugate non-transposed, and conjugate transposed
matrices, respectively. For instance, GEMM in TN mode
indicates that matrix A is transposed (T) and matrix B is
not (N). In terms of data types, we support S, D, C, and Z
for single precision floating point numbers, double precision
floating point numbers, single precision complex numbers,
and double precision complex numbers, respectively. The
specific application scenarios for each irregular GEMM type
are outlined in the table 1.

Irregular GEMM

Batch GEMM Comapct GEMM TSMM

Install time Run time

Transpositions
Datatype

Input Parameters
(M, N, K, Trans,
Group_count,Group_size)

\ v

Computing Template - :

(%}

o % Designer Tiling Designer

@

D

) A

s & General SIMD-friendly Minimize memory access
°2 data layout data layout

10jeIBUBD)
dnoio yse|

Maximize the computational
memory access rateio

\

[Load-balanced Multi-thread Optimizer }

<=

@Template—based code generation

Kernel Generater

Small GEMM, Compact GEMM, and TSMM
Kernel sets

<=

Dynamic mapping of threads
and tasks

‘ !

High-performance
computing Kernels

Instruction
mapping
Execution Plan Generator

=

9 =
=0
3 3
N @
o
[}

Pipeline
optimization

Batch GEMM, Compact GEMM and TSMM Plan

v

High-performance computation of irregular matrix multiplication.

Fig. 1. Input-aware tuning framework to optimize irregular GEMM on
ARMv8 and X86 CPUs

In the install-time stage, we present a code generation
method that is based on the typical computational pattern
of irregular GEMM, which can automatically generate a
vast number of computational kernels of varying sizes. In
addition, by leveraging our proposed instruction mapping
method and pipeline optimization approach, we achieve
superior performance on ARMv8 and X86 architectures.
This stage contains the following components:

o Computational Template Designer designs kernels
for the NN, NT, TN, and TT modes for three irregular

TABLE 1
Three classifications of irregular GEMM

Irregular GEMM Scenario

Types

Batch There are many groups of small matrices
(VMNK < 80) and when looking for the
ultimate multi-threaded performance.

Compact When there are many matrices of the same size,
and M, N, K < 33

TSMM One of the matrices A or B is a tall-and-skinny

matrix (one dimension of the matrix is much
larger than the other), and the tall-and-skinny
matrix needs to be reused by many times.

GEMM types. For small GEMM, these kernels do not
include packing operations. For compact matrices,
the kernels are based on a SIMD-friendly data layout
to take advantage of SIMD registers.

e Kernel Generator employs a computational template
based algorithm to generate hundreds of kernels
for every possible boundary case for each mode,
and using a ”ping-pong” strategy to minimize the
memory access overhead.

e Kernel Optimizer optimizes the generated kernels
through careful selection and scheduling of instruc-
tions to achieve performance that is as close as pos-
sible to the hardware optimal performance.

In the run-time stage, we present an input-aware tiling
algorithm to generate an execution plan by selecting the
optimal kernel for any input scale. This execution plan will
be saved in the form of the command queues. We abstract
the tiling problem as a boxing problem and use a dynamic
programming algorithm to minimize the amount of mem-
ory access and to maximize the computational memory
access ratio [30]. Furthermore, we propose a load-balanced
multi-threaded optimizer to enable the Batch GEMM to
achieve the optimal multi-threaded performance. This op-
timizer assigns tasks to threads dynamically by employing
a dynamic mapping between threads and tasks. It contains
the following components:

o Tiling Designer uses an input-aware tiling algorithm
to generate an optimal kernel selection strategy for
any possible input scale.

e Load-balanced Multi-thread Optimizer, designed
specifically for Batch GEMM, generates task groups
based on computer architecture, such as L1 cache
and matrix size, using the small matrix multiplica-
tion execution plan and dynamically assigns tasks
to threads through the dynamic mapping of threads
and tasks.

e Execution plan Generator selects the optimal com-
putation kernel based on the tiling strategy and
generates the execution plan separately in the form
of a command queue for each irregular GEMM types.

4 THE DESIGN OF INSTALL-TIME STAGE

In this section, we present the template-based code gener-
ation method which is built on typical GEMM computa-
tional patterns and obtains high performance by designing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

code mapping and pipeline optimization strategies based
on the characteristics of computer architecture. To take full
advantage of these patterns and implement code gener-
ation, we introduce the computational template designer.
Computational templates form the foundation of the code
generation method and consist of meta-templates and hy-
brid templates. Meta-templates are sets of predefined C
preprocessor macros that represent basic arithmetic oper-
ations. In contrast, hybrid templates are high-performance
assembly codes that are designed for a specific processor
architecture. By carefully designing the mapping between
the meta-templates to the highly optimized assembly in-
structions, the install-time stage allows for the generation
of high-performance computing kernels for three irregular
GEMM types of irregular matrix multiplication, on both
ARMvS and X86 CPUs. The install-time stage employs three
components to implement this process.

4.1 GEMM Kernel

This section outlines design strategies of GEMM kernel size,
to take advantage of the limited number of vector register
resources in modern CPUs. ARMv8 processors have 32 128-
bit vector registers, while Intel Cascade Lake processors
have 32 512-bit vector registers. When generating GEMM
kernels in assembly, it is crucial to use these registers
effectively to increase data reuse and reduce memory ac-
cess overhead. One efficient method is to divide GEMM
operations into smaller blocks. We refer to these blocks
as microkernels, which compute the matrix multiplication
between the matrix A of m, x 1 and the matrix B of 1 X n,..
The microkernel is then looped in K dimensions to compute
the block of matrix C of size m, X n,.. In order to maximize
data reuse, it is important to ensure that the matrix A of
m, X 1, the matrix B of 1 x n,, and the matrix C of m, X n,
can be fully stored in the SIMD registers. Additionally, we
should reserve registers for “ping-pong” operations.

Conventional approaches typically only require a main
kernel to be designed to achieve high performance. This
is because most of the computation can be tiled with the
main kernel, and the boundary portion of the computation
typically constitutes only a small fraction. However, in the
case of irregular matrix multiplication, it is essential to ac-
count for the impact of boundary issues on performance. To
achieve consistently high performance at any input matrix
sizes, we need to design computing kernels for all possible
boundary scales. In addition, to make full use of the width
of the SIMD registers, this paper classifies irregular matrix
multiplication into general and SIMD-friendly data layouts
based on the application scenarios.

4.1.1 General data layout

Irregular GEMM types based on general data layout include
batch GEMM and TSMM. Traditional methods often use
data packing operations, which enable the computational
kernel to have continuous access to memory and thus
achieve high performance. Such methods are not suitable
for small matrix multiplication, which results in significant
memory access overhead. Hence, in this paper, we design
separate small GEMM kernels for each transpose mode.
For TSMM, we design the data packing kernel consider-
ing that it is large enough to bring performance gains. This

5

way only one computation kernel needs to be designed for
each data type and it is able to handle all transpose patterns.
In contrast to the conventional approach, we also designed
all other boundary kernels as shown in Table 2.

TABLE 2
All generated kernels for TSMM

ARM NEON AVX512
s {1,.,12} x {1,..,8} {1,..,48} x {1,..,8}
D {1,.,8} x{1,.,4} {1,.,16} x {1,2}
C {1,..8} x{1,.,4} {1,.,8} x {1,2}
Z {1,..,4} x {1,.,4} {1,.,4} x {1,2}

Tables 3 and 4 depict the kernels which we plan to
generate for ARMv8 and X86 architectures, respectively.
The ARM Neon instructions” support for vector-to-element
multiplication enables the clever use of loop unrolling to
handle the TN mode which is not conducive to SIMD op-
erations. On the contrary, the AVX512 only supports vector-
to-vector multiplication, rendering it incapable of making
effective use of the SIMD registers in TN mode. To address
this issue, we transpose the matrix A and then use the
kernel of NN mode, as shown in Table 4. We point out that
the performance impact of this transposition operation is
acceptable.

TABLE 3
All generated kernels for small GEMM on ARMv8

NN NT N TT
S 16 x {1,.,4} 16x {1,..,4} 4 x{1,..,4} {1,..,4} x 16
12x{1,..,6} 12x{1,.,8} 3x{1,.,5} {1,..,6} x 12
8x{1,.,8} 8x{L,.,8} 2x{1,.,7} {1,.,8}x8
4x{1,..,13} 4x{1,.,20} 1x{1,.,10} {1,.,13} x4
3x{1,.,13} 3 x{1,.,24} {1,..,13} x 3
2x{1,..,13} 2 x{1,..,28} {1,..,13} x 2
1x{1,.,13} 1x{1,..,32} {1,..,13} x 1
D 8x{l,.,4} 8x{1,.,4} 4x{1,.,4} {1,..,4} x 8
4 x{1,..,8} 4 x{1,..,8} 3x{1,.,5} {1,..,8} x4
3 x {1,..,8} 3x {1,..,8} 2 x {1,..,7} {1,..,8} x 3
2x{1,..,15} 2x{1,.,20} 1x{1,..,10} {1,.,15} x 2
1x{1,..,,15} 1 x{1,..,20} {1,..,15} x 1
C 8x{l,.,4} 8 x {1,..,4} 4x{1,..,9} {1,..,4} x 8
4 x{1,..,9} 4 x{1,..,8} 3x{1,.,9} {1,..,9} x 4
3 x {1,..,9} 3 x {1,..,8} 2x{1,..,12} {1,..,9} x 3
2x{1,..,12} 2x{1,..,12} 1x{1,.,20} {1,.,12} x2
1x{1,.,20} 1x{1,.,20} {1,..,20} x 1
Z 4x{1,.,4} 4 x{1,..,4} 4 x{1,..,4} {1,..,4} x 4
3x{1,..,4} 3x{1,.,4} 3x{1,..,4} {1,..,4} x 3
2x{1,..,7} 2x{1,..,7} 2x{1,.,7} {1,..,7} x 2
1x{1,..,10} 1x{1,.,10} 1x{1,.,10} {1,..,10} x 1

These kernels, which cover almost all possible boundary
cases, allow us to minimize the generation of small blocks
as well as reduce the amount of memory accesses. This is
crucial for the performance improvement of irregular matrix
multiplication, which we will discuss in detail in Section 5.1.

4.1.2 SIMD-friendly data layout

For application scenarios with a large number of GEMMs
of the same size, we utilize SIMD-friendly data layout to
fully utilize the vector processing capability of modern pro-
cessors. We would like to emphasize that some applications
are inherently the SIMD-friendly data layout. In addition,

TABLE 4

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

All generated kernels for small GEMM on AVX512

NN/TN

NT

T

S {1,.,16} x {1, ., 30}

{17,.,32} x {1,.,13} {17,.

{33,.,48} x {1,.,8}
{49, .,64} x {1,.,5}

{1,.,16} x {1, ., 30}

{33,.,48} x {1,.,8}
{49, .,64} x {1,.,5}

{1,.,5} x {1,.,64}

.32} x {1,.,13} {6,.,8} x {1,.,48}

{9,.,13} x {1, .,32}
{14, .,30} x {1, .,16}

D{1,.,8} x {1, .,30}
{9,.,16} x {1,.,13}
{17,.,24} x {1,.,8}
{25,.,32} x {1,.,5}

{1,.,8} x {1,.,30}
{9,.,16} x {1,.,13}
{17,.,24} x {1,.,8}
{25,.,32} x {1,.,5}

{1,.,5} x {1,.,32}
{6,.,8} x {1,.,24}
{9,.,13} x {1, .,16}
{14,.,30} x {1,.,8}

C{1,.,8} x{1,.,15}
{9,..16} x {1,.,6}
{17,.,24} x {1, .,4}
{25,.,32} x {1,.,2}

{1,.,8} x {1,.,15}
{9,..16} x {1,.,6}
{17,.,24} x {1,.,4}
{25,.,32} x {1,.,2}

(1,2} x {1,.,32}

{3,.,4} x {1,.,24}
{5,.,6} x {1,.,16}
{7,.,15} x {1, ,8}

Z {1,.,4} x {1,.,15)
{5,.,8} x {1,.,6}
{9,.,12} x {1,.,4}
{13,.,16} x {1,.,2}

{1,.,4) x {1,..15)
{5,.,8} x {1,.,6}
{9,.,12} x {1,.,4}
{13,.,16} x {1,.,2}

{1,.,2} x {1, 16}
{3,.,4} x{1,.,12}
{5,.,6} x {1,.,8}
{7,.,15} x {1,.,4}

for some applications, the cost of converting to the SIMD-
friendly data layout is the same as converting to the generic
data layout [16]. Therefore the SIMD-friendly data layout
used in this paper does not add any additional overhead.

As depicted in Figure 2, when applied to a group of
matrices, this layout arranges the corresponding locations
of consecutive P matrices in a contiguous region of memory,
with padding added as necessary when there are insufficient
P matrices. The value of P depends on the data type and the
length of the SIMD register. For example, when working
with single-precision floating-point data on the Kunpeng
920 processor with the 128-bit SIMD register, P=4, and on
the x86 architecture with AVX512 support, P=16. The data is
designed to fit the length of the SIMD register.

.T ;T T “F
sl M3}£ Ms}é m211 || M2z || w213
i ; M311 || m312|| M318
m321|| M322] | M323) 5 -
i i M411 || Maf2|| m4q3
! 7
F F
M331| ¥ M332] ¥ M333] b 5
M221 || m222 || M223
- - — — |::> M321 || M322 || M323
M211| | M212|| M213] M411|| M412]| Ma13] M421 || 422 || M423
m221| | M22| | mp2a| | maz1|| M2z | wpiza e 6 nezlE oo

M331 M332 M333
M43\fy M43aly M43

M231| Fm2saf Fmzsa| | maz1|Fmasz| Fmasa

Fig. 2. SIMD-friendly Data Layout:3 x 3 matrices on Kunpeng 920.

In this layout, vectorization is a natural consequence. We
only need to address offsets to accommodate all transpose
patterns. Table 5 shows all the kernel sizes we have designed
for compact GEMM.

TABLE 5
All generated kernels for compact GEMM

SGEMM CGEMM DGEMM ZGEMM
Main 4 x4 4 x4 4 x4 3x2
Edge 4x{1,2,3} 4 x {1,2,3} 3x1 3x1
3x{1,2,3,4} 3x{1,2,3,4} 2x{1,2} 2x{1,2}
2x{1,2,3,4} 2x{1,2,3,4} 1x{1,2} 1x{1,2}
1x{1,2,3,4} 1x{1,2,3,4}

4.2 Computing Template Designer

We conducted a thorough analysis of computational pat-
terns of irregular matrix multiplication and identified them
as computational templates. As illustrated in Template 1, the
meta-template takes the kernel scale as input and generates
a high-level computational template as output. For the pur-
poses of the following discussion, we assume that the size
of the input kernel is M, x N,.. For each input kernel size,
these six templates (I, M1, M2, E, SAVE, SUB) are utilized
to implement the “ping-pong” operation which means the
data needed by the next template is loaded in the current
template to avoid pipeline bubbles.

Template 1: Meta templates supported in TGEMM

Input: m,., n,: the size of input kernel
Output: Computing micro-kernel
/*Matrix C is stored in Clyy, . 5p,) */

2 TEMPLATE_I

[

Viayy/* For Ix/

3 LOAD ‘/{AQ}/ « For M?2 */ — A[er]
Vipiy/ * For Ix/

4 LOAD ‘/{32}/ « For M?2 */ — B[2nr]

5 C[mTan] — FMUL(V{Al},V{Bl})
6 /* SIMD Multiply = /

7 TEMPLATE_M1

8 LOAD V{A2} — A[mrxl]

9 LOAD ‘/{32} — B[l X1,

10 | Clnoxn,) & FMA(V a1y, Vis1y)

11 TEMPLATE_M2

12 LOAD Vr{Al} — A[mrxl]

13 LOAD V{Bl} — B[anr]

1 | Cloxn,) & FMA(Via2y, Vigay)

15 TEMPLATE_E
16 L C[mrxnr] — FMA(V{A2}7V{BQ})

17 TEMPLATE_SUB

18 LOAD ‘/{Al} — A[mrxl]

19 LOAD V{Bl} — B[anT]

20 | Cunyxn,) & FMA(Viary, ViB1y)

21 TEMPLATE_SAVE

22 LOAD Vigrigncy < originClm, xn,]
23 V{om‘gnc} — FMA(C[menT]y Alpha)
24 | STORE Vigrigncy = originClm, xn,]

Template 1 presents our abstracted GEMM templates,
which include I, M1, M2, E, SAVE, and SUB. Each tem-
plate computes the matrix-matrix multiplication (via SIMD
FMA /FMUL) of m, x 1 of matrix A with 1 X n,. of matrix B
to obtain m,. x n, of matrix C, as shown in lines 5, 10, 14, 16,
and 20. Matrix C is stored in the SIMD register Cj,,, xp,]-

o TEMPLATE—Iand TEMPLATFE — E represent
the entry and the exit of “ping-pong” operation,
respectively. T EM PLAT E—1I loads the data it needs
and the data required by M2 in lines 3-4 and com-
pletes the computation at line 5. TEM PLATE — E
only contains calculation instructions, as shown in
line 16.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

o TEMPLATE — M1 and TEMPLATE — M2 rep-
resent the two phases of the "ping-pong” operation.
The M1 template loads the data needed by M2 in
lines 8-9 and completes the computation at line 10.
The M?2 template loads the data needed by M1 in
lines 12-13 and completes the computation at line 14.
The “ping-pong” operation will loop between M1
and M2, which we will detail in Section 4.3.

o TEMPLATE — SUB only loads the data it needs
in lines 18-19 and completes the computation at line
20. This template mainly deals with the case when
the kernel scale is small and “ping-pong” operations
are not profitable.

e TEMPLATE — SAVE multiplies the parameter
ALPH A with the matrix C and stores the matrix in
memory, as shown in lines 22-24.

It should be emphasized that the prefetching of the next
stage in the "ping-pong” operation does not strictly follow
this process, but also takes into account whether the matrix
is transposed and the choice of assembly instructions. In
some cases, we load all the data needed for M1 and M2 at
template M1 to take full advantage of the SIMD registers.
We will describe this in detail in Section 4.4.

These templates are built on the typical computational
patterns of GEMM. Further fine-tuning is necessary for
irregular GEMM-oriented applications in different specific
types. We will provide detailed descriptions in the following
sections.

4.3 Kernel Generator

In this section, We utilize the templates to automatically
generate the computing kernels with ping-pong operations,
as outlined in Algorithm 1. The use of automatic code gen-
eration significantly reduces the workload of our methods.
The generator updates the m, x n, block of matrix C by
computing the matrix multiplication of a matrix block A
of m, x K and a matrix block B of K X n,. When the
computation of the entire matrix C block is completed, it
is stored in memory. The generator takes a specified block
size and the parameter K as input and invokes the neces-
sary computational templates to generate efficient irregular
GEMM kernels for that scale. These kernels are combined
at run-time stage into an overall irregular GEMM execution
plan, making their implementation and optimization crucial
to the overall performance of the algorithm.

The algorithm 1 addresses the case where K < 4,
as shown in lines 1-8, by utilizing a set of templates.
When K >= 4, the ping-pong operation is initiated using
TEMPLATE_I (line 10) and terminated using TEMPLATE_E
(line 14). The loop between TEMPLATE M1 and TEM-
PLATE_M2, which constitutes the core of the ping-pong
operation, is used to minimize pipeline bubbles. In the case
where K%2 == 1, a SUB processing step is performed. It
is worth noting that similar techniques can be applied to
complex-number GEMM kernels.

4.4 Kernel Optimizer

We define instruction mapping rules to translate the
high level computational templates into architecture-specific

Algorithm 1: Computing kernel generator of irreg-
ular GEMM
Input: A, : m, X K; B, : K X ny; Cp : My X Ny
Output: Compute
kernel(C, = A, x B, + alpha x C,)
1 if K < 4 then
2 if K == 3 then
3 TEMPLATE I, TEMPLATE_E;
L TEMPLATE_SUB;

4 else if K == 2 then
5 L TEMPLATE I, TEMPLATE E;

6 else

7 ‘/Z(mrJrnT) - ‘/Q(mr+nr)+mT><nr71 — Empty
TEMPLATE SUB;

9 else

10 TEMPLATE I, TEMPLATE M2, K— = 2;
11 while K > 2 do

12 TEMPLATE M1, TEMPLATE_M?2;

L K—=2;

13 if K == 2 then

14 L TEMPLATE M1, TEMPLATE FE,

15 else
16 L TEMPLATE SUB;

17 TEMPLATE SAVE;

hardcoded optimization templates by selecting and schedul-
ing efficient assembly instructions. I'rGEMM currently fo-
cuses on the ARMv8 ISA and the x86-64 ISA. Benefiting
from the optimization templates, when new architectures
emerge, we only need to implement the corresponding
optimization templates.

4.4.1

For standard matrix column (row) main-order storage, we
carefully analyze the impact of data packing on performance
in irregular GEMM. This paper only employs the data
packing operation when it is advantageous to do so.

For the small matrix multiplication kernel that will be
used in batch GEMM, we designed computational kernels
for each of the four transposition modes.

In NN mode, we use the SIMD instruction to load matrix
A one column at a time. For AVX512, when the elements of
matrix B can be reused, that is, when m,. is large, we broad-
cast the B matrix into the register. And when m,. is small and
there is no need to reuse B, matrix B can be loaded using the
AVX512 instruction with embedded broadcast, which fuses
the load instruction with the compute instruction. While
there is no equivalent instruction in the ARMvS architecture,
this paper proposes the use of ping-pong operation to re-
duce memory access overhead by directly loading adjacent
rows. The instructions corresponding to the mate templates
in NN mode under the AVX512 and ARMv8 architecture are
detailed in the Figure 3.

The loading process for matrix A in NT mode is similar
to that in NN mode. The difference lies in the loading
direction of matrix B. For AVX512 instructions, we also use

General data layout

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Small GEMM on NN mode and TSMM

Compact GEMM

Hybrid templates

AVX512

ARM NEON

AVX512

ARM NEON

LOAD A(addr, offset, FA,
V_a{1, ., m})

/*The offset based on computational types*/
mov FA, 0

vmovupd V_a1, [addr + FA]

add FA, offset

vmovupd V_a2, [addr + FA]

add FA, offset
vmovupd V_an, [addr + FA]
add FA, offset

/*The offset based on computational types*/
mov FA, 0

Idr V_a1, [addr + FA]

add FA, offset

Idr V_a2, [addr + FA]

add FA, offset
Idr V_am, [addr + FA]
add FA, offset

/*if A transpose, offset = LDA*/
/*if A non-transpose, offset = 64*/
mov FA, 0

vmovupd V_a1, [addr + FA]

add FA, offset

vmovupd V_a2, [addr + FA]

add FA, offset
vmovupd V_am, [addr + FA]
add FA, offset

/*if A transpose, offset = LDA*/
/*if A non-transpose, offset = 16*/
mov FA, 0

Idr V_a1, [addr + FA]

add FA, offset

Idr V_a2, [addr + FA]

add FA, offset
Idr V_am, [addr + FA]
add FA, offset

LOAD B(addr, offset, FB,
V_b{1, .., n})

/*The offset based on computational types*/
mov FB, 0

vbroadcastsd V_b1, QWORD PTR [addr + FB]
add FB,offset

vbroadcastsd V_b2, QWORD PTR [addr + FB]
add FB, offset

vbroadcastsd V_bn, QWORD PTR [addr + FB]
add FB, offset

/*For Small GEMM, this only load on M1*/
mov FB, 0

Idr V_b1, [addr + FB]

add FB, offset

Idr V_b2, [addr + FB]

add FB, offset

Idr V_bn, [addr + FB]
add FB, offset

/*if B transpose, offset = 64*/

/*if B non-transpose, offset = LDB*/
mov FB, 0

vmovupd V_b1, [addr + FB]

add FB, offset

vmovupd V_b2, [addr + FB]

add FB, offset

vmovupd V_bn, [addr + FB]

/*if B transpose, offset = 16*/

/*if B non-transpose, offset = LDB*/
mov FB, 0

Idr V_b1, [addr + FB]

add FB, offset

Idr V_b2, [addr + FB]

add FB, offset

Idr V_bn, [addr + FB]

MUL(V_c{1, .., mxn},
V_a{1, ., m},
V_b{1, .., n})

vmulpd V_c1, V_a1, V_b1
vmulpd V_c2,V_a2, V_b1

vmulpd V_cm, V_am, V_b1

vmulpd V_c{m*(n-1)+1}, V_a1, V_bn
vmulpd V_c{m*(n-1)+2}, V_a2, V_bn

vmulpd V_c{m*n}, V_am, V_bn

fmul V_c1.2d, V_a1.2d, V_b1.d[0]
fmul V_c2.2d, V_a2.2d, V_b1.d[0]

fmul V_cm.2d, V_am.2d, V_b1.d[0]

fmul V_c{m*(n-1)+1}.2d, V_a1.2d, V_bn.d[0]
fmul V_c{m*(n-1)+2}.2d, V_a2.2d, V_bn.d[0]

fmul V_c{m*n}.2d, V_am.2d, V_bn.d[0]

vmulpd V_c1, V_a1, V_b1
vmulpd V_c2, V_a2, V_b1

vmulpd V_cm, V_am, V_b1

vmulpd V_c{m*(n-1)+1}, V_a1, V_bn
vmulpd V_c{m*(n-1)+2}, V_a2, V_bn

vmulpd V_c{m*n}, V_am, V_bn

fmul V_c1.2d, V_a1.2d, V_b1.2d
fmul V_c2.2d, V_a2.2d, V_b1.2d

fmul V_cm.2d, V_am.2d, V_b1.2d

fmul V_c{m*(n-1)+1}.2d, V_a1.2d, V_bn.2d
fmul V_c{m*(n-1)+2}.2d, V_a2.2d, V_bn.2d

fmul V_c{m*n}.2d, V_am.2d, V_bn.2d

[*TEMPLATE-M1*/
FMA(V_c{1, .., mxn},

vfmadd231pd V_c1, V_a1, V_b1
vimadd231pd V_c2, V_a2, V_b1

vfmadd231pd V_cm, V_am, V_b1

/*K=0 with TEMPLATE-M1*/
/*K=1 with TEMPLATE-M2 and TEMPLATE-E*/
fmla V_c1.2d, V_a1.2d, V_b1.d[K]
fmla V_c2.2d, V_a2.2d, V_b1.d[K]

fmla V_cm.2d, V_am.2d, V_b1.d[K]

vfmadd231pd V_c1, V_a1, V_b1
vimadd231pd V_c2, V_a2, V_b1

vfmadd231pd V_cm, V_am, V_b1

fmla V_c1.2d, V_a1.2d, V_b1.2d
fmla V_c2.2d, V_a2.2d, V_b1.2d

fmla V_cm.2d, V_am.2d, V_b1.2d

V_a{1, ., m},

V_b{1, .., n}) vfmadd231pd V_c{m*(n-1)+1}, V_a1, V_bn

vfmadd231pd V_c{m*(n-1)+2}, V_a2, V_bn

vfmadd231pd V_c{m*n}, V_am, V_bn

fmla V_c{m*(n-1)+1}.2d, V_a1.2d, V_bn.d[K]
fmla V_c{m*(n-1)+2}.2d, V_a2.2d, V_bn.d[K]

fmla V_c{m*n}.2d, V_am.2d, V_bn.d[K]

vfmadd231pd V_c{m*(n-1)+1}, V_a1, V_bn|fmla V_c{m*(n-1)+1}.2d, V_a1.2d, V_bn.2d
vfmadd231pd V_c{m*(n-1)+2}, V_a2, V_bn|fmla V_c{m*(n-1)+2}.2d, V_a2.2d, V_bn.2d

vfmadd231pd V_c{m*n}, V_am, V_bn fmla V_c{m*n}.2d, V_am.2d, V_bn.2d

mov FC, 0
vmovupd [dst], V_c1
vmovupd [dst + 64], V_c2

mov FC, 0
str [dst], V_c1
str [dst, #16], V_c2

vmovupd [dst + (m-1)*64], V_cm str [dst, #((m-1)*16)], V_cm

STORE(dst, FC, LDC,

V_c{1, .., mxn}) add dst, LDC

str[ds], V_c{m*(n-1)+1}
str [dst, #16], V_c{m*(n-1)+2}

add FC, LDC
vmovupd [dst+FC], V_c{m*(n-1)+1}
vmovupd [dst+FC + 64], V_c{m*(n-1)+2}

;/ll:novupd [dst+FC + (m-1)*64], V_c{m*n} str [dst, #((m-1)*16)], V_c{m*n}

mov FC, 0
vmovupd [dst], V_c1
vmovupd [dst + 64], V_c2

str [dst], V_c1.2d
str [dst, #16], V_c2.2d

vmovupd [dst + (m-1)*64], V._om str [dst, #((m-1)*16)], V_cm.2d

add, dst, LDC
str[dst], V_c{m*(n-1)+1}.2d
str [dst, #64], V_c{m*(n-1)+2}.2d

add, FC, LDC
vmovupd [dst+FC], V_c{m*(n-1)+1}
vmovupd [dst+FC + 64], V_c{m*(n-1)+2}

str [dst, #(m-1)16)], V_c{m*n}.2d

vmovupd [dst+FC + (m-1)*64], V_c{m*n}

Fig. 3. Instruction mapping rules between hybrid templates and optimization templates for DGEMM based on AVX512 and ARM NEON.

broadcast instructions. For the ARM architecture, NT mode
is favorable for SIMD operations as it allows for the direct
loading of a row of elements into the vector register. And
then, by using of the ARMv8 FMA instruction’s vector outer
product multiplication (i.e. multiply a vector with each
lane of another vector separately) to complete the matrix
multiplication.

Unlike NT mode, TN mode is not conducive to SIMD
operations due to the reversed data fetch order. To fully
utilize modern processor SIMD instructions, we transpose
matrix A and apply the same execution strategy as in NN
mode. Traditional methods handle the problem of TN mode
using data packing, which packs the matrices based on the
size of the computational kernel. However, data packing
is typically done for both matrices A and B, leading to a
significant memory access overhead. In contrast, this paper
proposes a transpose operation for only matrix A. It is
worth noting that for small matrices, the transposed data
can be completely stored in the L2 cache and will not be
swapped out during the entire operation. This transposition
strategy does not incur excessive access memory overhead,
but rather the performance benefits of vectorization are
significant.

TT mode is the inverse of NN mode in terms of data
order and requires only the opposite loading strategy of NN
mode to complete the computation.

The instruction mapping for TSMM is similar to that for
Small GEMM because they are both based on the general
data layout. We only need to adjust the address offset when
loading the data to generate the assembly kernel.

4.4.2 SIMD-friendly data layout

In SIMD-friendly data layout, we only need to design ad-
dress offsets to be able to handle all transpose patterns.
Figure 3 presents the conversion of the matrix template to
AVX512 assembly instructions. The efficient design of this
kernel template significantly reduces our workload. When
porting to different platforms, it is only necessary to match
the corresponding multiplication and access instructions
in order to achieve a high-performance compact GEMM
kernel.

In addition, after conducting experiments, we discov-
ered that the packing operation improves performance on
our implementation of the Kunpeng 920 platform. The
Kunpeng 920’s efficient memory access reduces the impact
of packing overhead on performance, while the resulting

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

sequential accesses yield significant improvements. We also
evaluated the packing strategy on an Intel platform and
found that, in most cases, direct loading without data pack-
ing yields higher performance. We would like to stress that
the decision to use data packing for compact GEMM should
be carefully evaluated in light of the specific characteristics
of the targeted computer architecture.

4.4.3 Pipeline optimization

In the kernel designer, various kernels of different sizes
can be generated based on the templates abstracted by us.
However, the directly generated kernel instruction pipeline
is not optimal. To ensure that each execution unit of the
processor is fully utilized, as shown in Figure 4, we employ
the following two methods for rescheduling: 1) separate
instructions that have data associated with them to the
greatest extent possible., and 2) inserting access instructions
between arithmetic instructions in order to hide memory
access latency.

ldp a8, q9, [pB]

ldp 90, q1, [pA] ldp 98, q9, [pB]

add pA, pA, #32 add pB, pB, #32 %‘:jd gg' gf‘[’;fj

ldp g2, g3, [PA] Idp 90, g1, [PA] add pA. DA, #32

add pA, pA, #32 add pA, pA, #32 PA. PA,

ldp g4, g5, [pA] ldp 92, q3, [pA]

add pA. pA, #32 add pA pA, #32 ‘fg:)“‘ é;e'qz;’[‘;?\']zd’ v8.2d
Idp @6, q7, [pAl] Idp q10, q11, [pB] add pA pA, #32

add pA, pA, #32 add pB, pB, #32 fmul v17.2d, v1.2d, v8.2d
dp a8, 9, [pB] dp a4, 5, [pAl i i
add pB, pB, #32 add PA, pA, #32 add 0B 'pB #'32

ldp 410, qf, [pB] ldp q12, q13, [pB] fmul v20.2d, v0.2d, v9.2d
add pB, pB, #32 add pB, pB, #32 fmul v21.2d, v1.2d, v8.2d
ldp ~ q12 qf3, [pB] ldp 46,7, [pAl fmul v18.2d, v2.2d, v8.2d
add pB, pB, #32 add pA pA, #32 -20, V2.20, VB.

q14, 15, [pB] hide the loadfmul v19.2d, v3.2d, v8.2d

instruction fmul v22.2d, v2.2d, v9.2d
)f

Idp q14, q15, [pB] reordering Idp
add pB, pB, #32 add pB, pB, #32 mul v23.2d, v3.2d, v9.2d

fmul v16.2d, v0.2d, v8.2d fmul v16.2d, v0.2d, v8.2d Idp 44, 45, [A]
fmul v17.2d, v1.2d, v8.2d fmul v17.2d, v1.2d, v8.2d » 49
fmul v18.2d, v2.2d, v8.2d fmul v20.2d, v0.2d, v9.2d add - pA, pA, #32

fmul v24.2d, v0.2d, v10.2d
fmul v19.2d, v3.2d, v8.2d fmul v21.2d, v1.2d, v9.2d fmul v29.2d. v1.2d. v11.2d
fmul v20.2d, v0.2d, v9.2d fmul v18.2d, v2.2d, v8.2d Idp q12‘ q‘i3 [‘pB]’)
fmul v21.2d, v1.2d, v9.2d fmul v19.2d, v3.2d, v8.2d add B ! B #'32
fmul v22.2d, v2.2d, v9.2d fmul v22.2d, v2.2d, v9.2d e 94 vi0.2d
fmul v23.2d, v3.2d, v9.2d fmul v23.2d, v3.2d, v9.2d ol V3120 v3od v od
fmul v24.2d, v0.2d, v10.2d fmul v24.2d, v0.2d, v10.2d B Al
fmul v25.2d, v1.2d, v10.2d fmul v29.2d, v1.2d, vi1.2d atd oA P 2
fmul v26.2d, v2.2d, v10.2d fmul v26.2d, v2.2d, v10.2d DA
fmul v27.2d, v3.2d, v10.2d fmul v31.2d, v3.2d, vi1.2d Im“} Vgg'gj' "é'gg' Vl?gg
fmul v28.2d, v0.2d, vi1.2d fmul v25.2d, v1.2d, v10.2d ‘2:3“ ;14‘ qig e Vit
fmul v29.2d, v1.2d, vi1.2d fmul v28.2d, v0.2d, v11.2d acd oB. b, 535
fmul v30.2d, v2.2d, v11.2d fmul v27.2d, v3.2d, v10.2d fmul VZ% 2d’ v3.2d. v10.2d
fmul v31.2d, v3.2d, vi1.2d fmul v30.2d, v2.2d, v11.2d -20, v3.20, viU.

fmul v30.2d, v2.2d, v11.2d

Fig. 4. Kernel optimization strategy based on ARMv8

In particular, for the batch processing problem, we also
insert a prefetch instruction between two GEMM operations
to minimize the occurrence of cache misses as much as
possible.

5 THE DESIGN OF RUN-TIME STAGE

In the run-time stage, we propose an input-aware tiling
algorithm that selects the optimal kernels, which are gener-
ated during the install-time stage, for any input size. Addi-
tionally, we propose load-balanced multi-thread scheduling
algorithms to fully utilize the performance of modern multi-
core processors. In the tiling strategy, we carefully analyze
the factors that impact performance and abstract the tiling
problem into the boxing problem. We use the dynamic
programming approach to minimize the amount of memory
access and to maximize the computational memory access
ratio. The kernels selected by the tiling algorithm are linked
as execution plans and saved as command queues, which
significantly reduces the number of branch commands and
enhances performance.

5.1 Tiling Designer

The tiling designer selects the optimal kernels from among
hundreds of kernels based on the user input matrix size,
and saves it as an execution plan in the form of a command
queue. This approach enables generating the plan once and
calling it multiple times to reduce overhead.

The tiling algorithm discussed in this section is con-
cerned with optimizing block tiling at the microkernel level
for both ARMvVS8 and Intel x86 architectures. In large-scale
GEMM problems, there is often no need to consider tiling
in particular. This is because 1) most of the computation
can be done using a specially optimized kernel that can
hide the memory access overhead almost completely using
computational instructions, and 2) the bounding part ac-
counts for a small percentage of the total computation size,
so high performance can be achieved overall even without
special optimization. However, the boundary regions of
irregular matrix multiplications cannot be ignored as they
may contribute a significant portion of the computation,
and thus a reasonable tiling strategy is necessary to ensure
nearly optimal performance. In this paper, we consider the
tiling strategy from two perspectives:

e From the perspective of memory access size, a rea-
sonable tiling algorithm can reduce the amount of
accessed data. As shown in the figure 5, each block
is loaded with the matrix A of m, X k and the matrix
B of K x n,, and they are multiplied to obtain the
matrix C block of m,. X n,.

k k n
1 1 1
m- L] +=m- X
H m, rk
ne
ne
Cc Ac BC

Fig. 5. The inner kernel perform a slice-times-slice matrix-matrix
multiplication(m,- and n,- are the sizes suit for register locking).

We can easily conclude that the whole GEMM prob-
lem needs to load a total of X(m, + n,) x K data.
And the number of computations is the same for
different tiling methods. Therefore, how to minimize
the Equation 3 is an important design direction.

Minimize(E(m, + n,)) 3)

e From the point of view of hiding memory ac-
cess overhead using computational instructions, we
should maximize the computational memory access
ratio (CMAR) [30], which is defined as the ratio of
computational operations to memory accesses and
is important for efficiently hiding memory access
overhead. The computational memory access ratio
for the GEMM problem is given by the expression
%. Our goal is to make sure that the CMAR
of each kernel is not too small, and we can do this by
minimizing Equation 4.

1 1

Mim'mize(E(m— + ;)) 4)

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

This paper abstracts the tiling problem as a two-
dimensional boxing problem , which is known to be an NP
problem, aiming to fill the large box with a number of small
boxes exactly while satisfying Equations 3 and 4. Where the
large boxes represent the size of the input matrix C and the
small boxes represent the size of the hundreds of kernels we
generate. In addition, there is no limit to the number of each
small box that can be used.

Sub-tiling 1

Z bun
-ans

Sub-tiling 1

Sub-tiling 2 _Kernel

Fig. 6. Decomposition of the tiling problem

This paper presents a dynamic programming approach
to design a tiling algorithm for the this problem. The goal is
to divide the problem into smaller subproblems, or tiles,”
and find the optimal tiling strategy among them to iter-
ate the optimal execution plan. Regarding the subproblem
decomposition, we emphasize that 1) when the size of a
generated kernel is equal to the size of the subproblem, it is
optimal to directly use with this kernel to avoid additional
memory access overhead. 2) In this paper, we divide the
tiling problem into the two cases depicted in Figure 6, where
the block in the lower right corner represents the size of a
certain kernel in the kernel set. We can obtain the optimal
strategy for these two subproblems by several iterations. We
have to emphasis that, although other partitioning methods
exist [31], they require algorithms with higher algorithm
complexity to implement (e.g., DFS algorithm) and are not
suitable for the problem addressed in this paper.

As demonstrated in Algorithm 2, this algorithm takes
the size of the matrix C and the generated kernel as inputs,
and produces the optimal tiling strategy as output. The
notation dpli][j] is used to represent E(M + N,) (Eq. 3) at
the current scale, dp_v represents Z— + L (Eq. 4), and
dp_back denotes the current optnnal tlhng "policy at the
current scale, in the form of a command queue containing
several kernels.

As shown in lines 2-3 in Algorithm 2, the dynamic
programming method traverses the entire two-dimensional
space. We use K to represent the current traversed kernel,
as shown in line 4. When the current size can be exactly
filled by a single kernel, the optimal strategy is to directly
call this kernel, as shown in line 6. The current state is then
saved in lines 7-9. Otherwise when there is a strategy with
fewer memory accesses, as depicted in Equation 3, update
the dp array as shown in lines 10-11. The corresponding
state is saved, as shown in lines 12-17. Furthermore, in case
of strategies with equal memory accesses but larger CMAR,
as depicted in Equation 4, the strategy with the larger total
CMAR is selected and saved, as shown in lines 19-24.

Figure 7 shows the difference between the traditional
tiling method and our proposed tiling method under the
ARMVS architecture. Our approach achieves a significant
reduction in the amount of memory accesses. Moreover, it
effectively reduces the formation of smaller blocks, which
possess a low CMAR and present challenges for optimizing
high-performance computations.

10

Algorithm 2: Tiling algorithm
Input: M x N: Matrix size of C;
kernels: List with all generated kernels
Output: Execution plan for irregular GEMM
1 init_dp_matriz(dp_matriz, M, N, dp_back);
2 fori=1— M do

3 forj=1— N do

4 for k in kernels do

5 m=km, n=Kkn;

6 ifi-m==0andj-n==0then
7 dp[i][j] = m +n;

8 dp_v[i][j] = & + 33

9 dp_back[i][j] = k.kernel;

10 else if dp[i]lj] >
min(dpli-m][jl+dp[m][j-n]+m+n,
dplillj-n]+dpli-ml[n]+m+n) then

n apfillj) =

min(dpli — ml[j] + dplm][j —n] +m -+
n, dpli)[j —n]+ dp[i —m][n] +m+n);

12 if dpli-mi[jl+dp[m][j-n] >

dplillj-n]+dpli-m][n] then

13 dp_backl[i][j] = dp_back[i][j — n] +

dp_back[i — m][n] + k.kernel,

14 dp_v[i][j] = dp_vli][j — n] +

dp_v[i —m][n] + L +L;

15 else

16 dp_back[i][j] = dp_back[i — m][j] +

dp_back[m][j — n] + k.kernel;

17 dp_vli][j] = dp_v[m][j —n] +

| dpofi - mll]+ &+ L

18 else if dp[i][j] ==
min(dpli-mlljl+dp[m][j-n]+m+n,
dplillj-n]+dpli-ml[n]+m+n) then

19 if dp_vli-mi[jl+dp_v[mllj-n] >

dp_vlillj-n]+dpli-m][n] then

20 dp_back[i][j] = dp_back[i][j — n] +

dp_back[i — m][n] + k.kernel;

2 dp_v[i][j] = dp_vli][j — n] +

dp_v[i —m][n] + £ + %;

22 else

23 dp_backli][j] = dp_back[i —m][j] +

dp_back[k.m|[j — n] + k.kernel;

2 dp_vli][j] = dp_v[m][J*HH

dp_vli —m][j] + 5 + 5

In addition, the batch GEMM and compact GRMM only
need to consider the blocking at the micro-kernel level since
their application scenarios allow the matrix to be fully stored
in the L2 cache. In contrast, TSMM cannot store entirely
into the L2 cache, requiring us to consider the blocking
strategy at the cache level. Typically, the traditional GEMM
algorithm packs a block of the A or B matrices into a linear
buffer, enabling it to be stored in the last level of the data
cache [32]. Similarly, another matrix block is packed into a
linear buffer adapted to the L2 data cache. Data packing is

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

12 8x8 8x7
12x8 12x4 || x 12x1
2
4x8 4x7
2x8 2x4 | 22 2x1
X8 x| e ;tm o8 it

(a) Traditional tiling method (b) Small GEMM tiling

method

Fig. 7. Tiling method of 15 x 15 SGEMM.

essential to achieve high-performance GEMM by reducing
memory access latency through cache locality optimization
[33], [34]. However, we note that the blocking parameter
is usually fixed which is not suitable for tall-and-skinny
matrices. This is because the valuable cache resource are
wasted when the dimensions of the tall-and-skinny ma-
trix are smaller than the blocking size. In this paper, we
proposed a dynamically tuned blocking method based on
cache size and input matrix properties for TSMM to fully
utilize the cache resource. Additionally, considering that the
application scenario of TSMM often requires reusing the tall-
and-skinny matrix multiple times, we extract the packing
operation for the tall-and-skinny matrix to further reduce
the overhead of data packaging operations.

5.2 Load-balanced Multi-thread Optimizer

In this section, we present a load-balanced multithreaded
optimization approach designed for the batch GEMM. This
highly effective batch GEMM optimization strategy consists
of two steps. First, a number of large matrix groups are
divided into smaller task groups. Second, these task groups
are dynamically assigned to threads using a dynamic map-
ping between threads and command queues proposed in
this paper. This strategy allows us to achieve significant
performance improvements in multi-threaded acceleration.

5.2.1 Task Group Generator

The task group generator divides each matrix group into
smaller groups, called task groups, which are then assigned
to threads for processing. As shown in Figure 8, the tiling
designer develops an optimal computing strategy based on
matrix properties in order to maximize performance with-
out using data packing. This strategy is only applied once
per matrix group in order to minimize overhead. However,
directly assigning task groups to threads can lead to an
imbalance in workload, as the number and size of matrices
can vary significantly between groups. On the other hand,
assigning individual matrices to threads can result in a
high overhead for thread scheduling, particularly when the
matrix size is small and the number of threads is large,
causing some threads to wait for task assignment. Thus, it
is important to group task groups in a way that matches the
hardware specifications in order to ensure optimal perfor-
mance.

Z(mi X ki +m; X n; +n; X k;) < L1 cache (5)

In accordance with Equation 5, we present an upper bound
on the matrix contained within each task group. This bound

11

& nlil

m[i r£

T
Group_count
Selecting the optimal

calculation strategy based on
matrix properties

calculation calculation calculation calculation
strategy strategy strategy strategy o

Task Group
Generator

Tiling Designer

Dividing task groups
based on matrix size

Atomic Operation

N

[Task /[Task || Task /| Task |/|/Task /|/Task |{/Task | = »
1 2 & 4 5] 6 7

Get new tasks from the command
queue when the calculation is complete

..............

Task Execution

Fig. 8. Overview of multi-thread scheduling.

Thread1

is determined by the matrix size and the size of the L1 cache.
As illustrated in Figure 8, we store small GEMM groups
that do not exceed this bound in the form of a command
queue, allowing threads to execute these commands directly
without invoking the small GEMM interface.

5.2.2 Dynamic mapping between threads and tasks

To achieve the optimal multi-thread speed-up ratio, we em-
ploy dynamic assignment of task groups to threads. While
the pre-grouping strategy results in minimal variance in the
computational workload among the task groups, it is worth
noting that larger matrices tend to achieve higher processor
performance, while particularly small GEMMs may only
attain approximately 10% of peak processor performance
according to [10]. As a result, even when the computational
workload is equivalent, the task group with larger matrices
will execute significantly faster than the group with smaller
matrices, potentially causing a load imbalance. To address
this issue, we propose a dynamic mapping of threads and
tasks to enhance multi-thread execution efficiency.

This dynamic scheduling algorithm designs for load
balancing, which is an improvement over static scheduling.
The kernel selection and tiling design will be placed in
command queues, which reduces the resource allocation
overhead for individual threads. As shown in Figure 8, the
simplified task assignment process is depicted. The number

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 3: Load-balanced Multi-thread schedul-
ing algorithm
Input: A, B, C; /*array*/
M _array, N_array, K_array;
transa_array, transb_array;
group_rount, group_size;
Output: Dynamic scheduling strategy
ide =0,T = 0;
for P =0 — group_count — 1 do
tra = transa_array[pl;
trb = transb_arrayp|;
m = m_array[pl;
n = n_array|p|;
k = k_array[pl;
kernel = tiling_designer(tra,trb,m,n, k);
Ntask = L1_cache_size/(mxn+nxk+kxm);
fori = 0 — group_size[p] — 1;i+ = Ntask do
compute_n = min(Ntask, group_size[p] —i);
12 task_group|T] < (kernel,compute_n,idx);
13 T+ = 1; ide+ = compute_n;

O 0 N S Ul R W N =

_
R o

14 mutex.init();

15 total_num =T}

16 create_threads(thread_array, THREAD_NUM);
17 /* Multi-thread execution */

18 while 7" > 0 do

19 | mutex.lock(), T— = 1;

20 if T' < 0 then

21 | mutex.unlock(), break;
2 | idx = total_num — T — 1, mutex.unlock();
3 | task_grouplidz].run();

24 join_threads(thread_array, THREAD_NUM);

of matrices assigned to each thread is based on the size
of each group of matrices. The global variable N is used
to indicate the current number of remaining tasks. When a
thread finishes its current task, it will check if there are any
remaining tasks that can be executed. When N > 0, a new
group of tasks is obtained from the command queue. This
process is atomic. The dynamic scheduling method, which
is based on the pre-grouping of tasks, allows LBBGEMM to
achieve optimal multi-thread acceleration.

Algorithm 3 presents a pseudo-code depiction of the
aforementioned optimization process. First, the algorithm
determines the optimal tiling strategy and computation
kernels based on the characteristics of the input matrix,
as illustrated in lines 3-8. This selection only needs to be
performed once per group of matrices. Second, the algo-
rithm calculates the most suitable number of matrices for the
current task group, as shown in line 9. Third, it divides the
large set of matrices into several smaller task groups for the
multi-thread optimizer to allocate and schedule, as demon-
strated in lines 10-13. These task groups are represented
in the form of command queues, as indicated in line 12.
Our implementation ensures that the chosen computation
strategy is optimal for the arrangement of these commands
given the matrix properties. Finally, a load-balanced multi-
thread optimizer dynamically assigns these task groups to

12

each thread to ensure maximum load balancing, as shown
in lines 14-24. A mutex lock is initialized in line 14, and the
multi-thread execution in lines 18-23 allows each thread to
access the current state of the command queue by atomically
accessing the global variable T. If a thread is idle and the
task queue is not empty, it will execute a new task. These
methods enable the efficient computation of batch GEMMs
on state-of-the-art hardware platforms.

5.3 Execution Plan Generator

The execution plan generator selects the optimal compute
kernel based on the tiling designer and links it as an
execution plan, which is saved as a command queue. By
executing this command queue, we are able to compute
the irregular GEMM with high performance. We ensure that
this is the optimal choice for instruction scheduling at these
input parameters.

For Compact GEMM, the tiling designer utilizes high-
performance kernels based on a SIMD-friendly data layout
to generate a high-performance execution plan. As dis-
cussed in Section 4.4, data packing operations can yield
performance gains on the Kunpeng 920, and thus the ex-
ecution plan based on Kunpeng 920 includes data packing
operations that match the computational kernel.

For batch GEMM, it leverages the small GEMM ker-
nel and combines it with the load-balanced multithreaded
scheduling framework to achieve high performance for all
threaded modes. It is important to note that each group
in batch GEMM usually contains multiple matrices of the
same size, and the small GEMM plan is generated at the
beginning of each group. As a result, when allocated to each
matrix, these overheads are negligible.

For TSMM, we designs a blocking strategy based on
the properties of the matrices, as described in section 5.1,
to maximize cache utilization. Subsequently, the computing
kernels are chosen based on the result the tiling designer.
Finally, the above policies are linked into the execution plan.

6 PERFORMANCE EVALUATION

We presents an evaluation of the performance of rGEMM
on server-grade ARMv8 (Kunpeng 920) and x86-64 (Intel
Cascade Lake) CPUs. Our experiments found that the Intel
Xeon Gold 6240 CPU was instable in performance when
overclocked. Therefore, we adjusted the frequency to the
processor’s base frequency which is 2.6GHz. To evaluate the
effectiveness of IrGEMM, we compared it with five BLAS
libraries, including Intel OneAPI MKL - the official perfor-
mance library for Intel X86 architecture, ARMPL - the official
performance library for ARM architecture, BLIS - a widely
used open-source BLAS library in the industry, LIBXSMM
- which is optimized for small matrices, and OpenBLAS -
with is the most widely used open-source BLAS library in
the industry. Table 6 outlines the experimental conditions.

The performance tests used in this paper were compiled
using the GCC7.5 compiler with the ”-O3 -g” option. We
initialize the matrix by filling it with random floating point
numbers (0 to 1) with reference to the generic test scheme
[35]. We run each core 100 times and take the geometric
mean as the final result.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[C_]rGEMM GFLOPS
[ARMPL GFLOPS
BLIS GFLOPS
[—— ItGEMM Speedup
—— ARMPL Speedup
) —— BLIS Speedup

500

1 4 8 16 32
NUM_THREADS

(a) SGEMM Batch

[T1

1 4 8 16 32
NUM_THREADS

(b) DGEMM Batch

13

500 w156 ;

20

150 3 18

100 q 10 16
9 350 e 8 g
S 300 7 3 9 123
= 14ae 4 Q
Prad 2 100 8
G 250 R2a o 10(%

200 éU 8

150 .16 50 i

100 i ;

50 ’_IT
0= 7_‘ —‘_‘ ‘92 fpr==o = 10
1 4 8 16 32 48 1 4 8 16 32 48

NUM_THREADS NUM_THREADS

(c) CGEMM Batch (d) ZGEMM Batch

Fig. 9. Performance of the multi-threaded IrGEMM batch GEMM compared with ARMPL, BLIS, and LIBXSMM based on ARMv8 architecture.

1000 1 [.—] 'GEMM GFLOPS
] MKL GFLOPS

800 1== IrGEMM Speedup
—r— MKL Speedup

4 8 16
NUM_THREADS

(a) SGEMM Batch

[C_JIrGEMM GFLOPS
[_] MKL GFLOPS 36

{—+— IrGEMM Speedup
I—+— MKL Speedup

1 4 8 16 18
NUM_THREADS

(b) DGEMM Batch

1600 1 [I"GEMM GFLOPS 39 [IrGEMM GFLOPS 20
[__|MKL GFLOPS : 450 1|__] MKL GFLOPS
1400 28 100 n
1200 {—— IFGEMM Speedup 24 350 || IFGEMM Speedup
|—— MKL Speedup 2 |—— MKL Speedup
21000 20g @300 12g
T 800 16§ g2 2
00 128 6200 88
8 150 4
400 . 100
el = B :
0= t t T t 10 0+ t t T —
1 4 8 16 18 1 4 8 16 18

NUM_THREADS

(c) CGEMM Batch

NUM_THREADS

(d) ZGEMM Batch

Fig. 10. Performance of the single-threaded IrGEMM batch GEMM compared with Intel MKL, BLIS, and LIBXSMM based on X86 architecture.

TABLE 6

Experimental environments

CPU Kunpeng 920 Intel Xeon Gold 6240
Peak perf. (FP64) 10.4GFLOPS 83.2GFLOPS
Peak perf. (FP32) 41.6GFLOPS 166.4GFLOPS
Number of Cores 48 18
Arch. ARMv8.2 Cascade Lake
Freq. 2.6GHz 2.6GHz
SIMD 128 bits 512 bits
L1D cache 64KB 32KB
L2 cache 512KB 1024KB
Compiler GCC75 GCC75
Intel OneAPI MKL - 23.0
ARMPL 22.1.0 -
BLIS 0.9.0 0.9.0
Libxsmm 1.17 1.17
OpenBLAS 0.3.21 0.3.21

6.1 Batch GEMM

In this study, we conduct a detailed analysis of the perfor-
mance of IrGEMM in comparison with high-performance
BLAS libraries supplied by vendors and the industry, on
both ARM and X86 platforms. We evaluate the effective-
ness of our proposed code generation method and tiling
method using single-threaded performance comparisons.
Moreover, we test our multi-threaded load balancing capa-
bility through a multi-threaded performance comparison. To
fully test the load balancing capabilities of batch GEMM, we
set group_count = 4, group_size = {10000, 1000, 100, 100},
m =n =k = {10, 20, 30, 40}.

Figure 11 illustrates the single-threaded batch GEMM
performance of IrGEMM, ARMPL, BLIS, and LIBXSMM
on ARMvVS architecture, while Figure 12 presents the per-
formance of single-threaded batch GEMM for IrGEMM,
Intel MKL, BLIS, and LIBXSMM on Intel Cascade Lake

architecture. Note that LIBXSMM does not support complex
data types. Based on the results, we can make the following
observations: 1) In terms of single-threaded performance,
IrGEMM outperforms the other libraries on all four data
types. For example, in ARM architecture, 'GEMM provides
speedup ratios up to 2.7x, 2.5%, and 1.8x over ARMPL,
BLIS, and LIBXSMM, respectively, for DGEMM. In X86
architecture, TGEMM provides speedups up to 2.5x, 2.1x,
and 2.1x over MKL, BLIS, and LIBXSMM, respectively. 2)
IrGEMM performs better on real number problems than
other libraries because traditional methods struggle to han-
dle boundary problems, which constitute a significant pro-
portion of the total computation for small matrices in batch
problems. IrGEMM takes advantage of the SIMD features
of modern processors by optimizing all possible boundary
modes, and we proposed a dynamic tiling method to select
the optimal computing kernels. 3) rGEMM performs the
worst in TN mode compared to other transpose modes,
as TN mode is not SIMD friendly. Although we describe
the treatment for TN mode in Section 4.4, there is still
additional access overhead compared to other transposition
modes. However, IrGEMM still outperforms other library
implementations.

For multi-threaded tests, we have conducted a compre-
hensive analysis of performance at varying thread counts.
It should be noted that LIBXSMM lacks support for a
multi-threaded batch interface, while BLIS has only been
evaluated to have multi-threaded acceleration on ARM plat-
forms. Figure 9 presents the multithreaded performance of
IrGEMM and ARMPL, BLIS on ARMvVS architecture. Figure
10 illustrates the multithreaded performance of IrGEMM
and Intel MKL under the Cascade Lake architecture. To com-
pare the load balancing capability of these three libraries,
we utilize the ratio of multi-threaded performance to single-
threaded performance as the multi-threaded speedup ratio.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

IrGEMM
ARMPL
BLIS
LIBXSMM

ok

SNN SNT STN STT
MODE

GFLOPS
N
GFLOPS

o = N W A OO N

DNT DTN ST
MODE

" D.NN

(a) SGEMM Batch (b) DGEMM Batch

14

GFLOPS
GFLOPS
O AN W A OO N

ZNN ZNT ZTIN ZTT
MODE

CNT COIN CTT
MODE

C_NN

(c) CGEMM Batch (d) ZGEMM Batch

Fig. 11. Performance of the single-threaded IrGEMM batch GEMM compared with ARMPL, BLIS, and LIBXSMM under the NN mode, based on

ARMv8 architecture.

IrGEMM
MKL
BLIS 50

LIBXSMM 45

30 40

25 35

30

25

15 20

10 15

10

5 5
04 otk .

SNN SNT STN STT CNN CNT CITN cCTT
MODE MODE

GFLOPS
N
=)

GFLOPS

(a) SGEMM Batch (b) DGEMM Batch

GFLOPS
GFLOPS

o

Sk “hhak

DNN DNT DTN DT ZNN ZNT ZTIN ZTT
MODE MODE

(c) CGEMM Batch (d) ZGEMM Batch

Fig. 12. Performance of the single-threaded IrGEMM batch GEMM compared with Intel MKL, BLIS, and LIBXSMM under the NN mode based on

X86 architecture.

Based on the observations from Figure 9 and Figure 10, we
draw the following conclusions: 1) Regarding absolute per-
formance, the IrGEMM implementation in this study out-
performs other BLAS library implementations on ARM and
X86 platforms by a significant margin. It displays consider-
able performance advantages across all four data types. 2)
On ARM platform, with regards to multi-threaded speedup
ratio, ARMPL and BLIS perform comparably under multi-
threaded acceleration, but the speedup is not evident be-
yond 16 threads. As a comparison, IrGEMM outperforms
the other libraries significantly in terms of multi-threaded
acceleration. Specifically, it achieves speedups of up to 4.5x,
8.7x, 8.4x,9.3x, 13.1%, and 14.6x for 1, 4, 8, 16, 32, and
48 threads, respectively, compared to ARMPL. Similarly,
compared to BLIS, we can achieve up to 4.6x, 8.6x, 8.4x,
8.7x, 10.5%, and 14.3x with 1, 4, 8, 16, 32, and 48 threads,
respectively. 3) Additionally, we demonstrate extreme ac-
celeration ratios on the X86 platform. Despite IrGEMM'’s
multithreaded acceleration ratios on SGEMM being almost
identical to Intel MKL, we still achieve a significant absolute
performance advantage. I'GEMM’s multithreading perfor-
mance is superior to the MKL implementation for all other
data types. Specifically, it achieves speedups of up to 3.3 %,
29x%, 3.2%x, 44x%x, and 3.4x for 1, 4, 8, 16, and 18 threads,
respectively, compared to Intel MKL. This indicates that the
proposed load balancing optimization method is effective.

6.2 Compact GEMM

Of the mainstream BLAS libraries currently available, only
Intel MKL supports the compact interface, while other li-
braries require the batch interface to conduct tests. To fully
demonstrate the performance of each kernel, we evaluate
the performance of square matrices of sizes 1-33 for each
function with a batch size of 16384.

Figures 13 and 14 demonstrate the high performance
of our Compact GEMM in NN mode for real/complex
numbers with single or double precision. On the ARM
platform, we compare IrGEMM with ARMPL batch, BLIS
batch, and LIBXSMM batch interfaces, while on the X86
platform, we compare it to the MKL Compact interface, the
BLIS batch, and the LIBXSMM batch interface. As shown
in Figures 13 and 14, we can conclude that 1) IrGEMM
demonstrates significant performance advantages on both
the ARM and X86 platforms. Specifically, for DGEMM
on the ARM platform, compared to ARMPL, BLIS, and
LIBXSMM, IrGEMM provides up to 3.4x, 3.2%, and 2.4x
speedups, respectively. On the X86 platform, compared to
MKL, BLIS, and LIBXSMM, IrGEMM provides up to 1.4x,
7.6x, and 4.8x speedups for DGEMM, respectively. 2) Both
IrGEMM and MKL's compact interfaces exhibit strong per-
formance when the matrix size is small. This is due to the
fact that both implementations use a SIMD-friendly data
layout. The conventional data layouts used by other libraries
have difficulty taking full advantage of the width of SIMD
registers when the matrix size is small. 3) As the matrix
size increases, the performance gap gradually decreases. Al-
though the traditional data layout performs poorly in small-
scale matrix multiplication due to its inability to take full
advantage of the SIMD features of modern processors, we
point out that when the matrix size is large enough, SIMD-
friendly data layouts will no longer be advantageous. This
is because the computational access ratio of the traditional
data layout is larger than that of the SIMD-friendly data
layout. As described in section 5.1, for real numbers, the
computational access ratio of the traditional data layout is
%, while the computational access ratio of the SIMD-
friendly data layout is =27 [11]. A large computational
access ratio means that we can use compute instructions to

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Dgemm_compact

20 (=" \rGEMM
18 {{—— ARMPL S
16 [|——BLIS

[|—=— LIBXSMM gl

GFLOPS
O AN Wh OO N ®

0 3 6 9 12151821 24 27 30 33
M=N=K

0 3 6 9 121518 21 24 27 30 33
M=N=K

15

Cgemm_compact Zgemm_compact

P Sl
e
e

GFLOPS
O =2 NWHAOON®O

0
0 3 6 9 121518 21 24 27 30 33
M=N=K

0 3 6 9 121518 21 24 27 30 33
M=N=K

Fig. 13. Performance of the I'lGEMM compact GEMM compared with ARMPL, BLIS, and LIBXSMM based on ARMv8 architecture.

5 e Sgomm compact —Doemm compact ___
—— IrGEMM 20
40 [—— Intel MKL 1
35 |——BLIS
|—— LIBXSMM
? 30
O 25

0 3 6 9 121518 21 24 27 30 33
M=N=K

0 3 6 9 12151821 24 27 30 33
M=N=K

60 - Cgemm_compact © -Zgemm_compact
Vi and
50+ Xjaf” 35
7~ »
It 30 . e
ROL Ny 82 /&/\;@r«f
g 30 \f g 2 / el
/7
20l T eV T T T T Ay Ve 15 el
e ol 1
10 / 5
0 \\\\\\\ 0 D R S T S S S S S S
0 3 6 9 121518 21 24 27 30 33 0 3 6 9 121518 21 24 27 30 33
M=N=K M=N=K

Fig. 14. Performance of the IrGEMM compact GEMM compared with Intel MKL, BLIS, and LIBXSMM based on X86 architecture.

hide memory access instruction latency. When the matrix
size is large enough, the conventional data layout can also
make great use of the width of the SIMD registers. Nev-
ertheless, the disadvantage of memory access overhead in
the computing kernel makes SIMD-friendly data layout no
longer advantageous for large-scale matrix multiplication.

6.3 TSMM

This paper evaluates the performance of TSMM on the
ARMvS and X86 architectures. On the ARM platform, we
compare IrGEMM with ARMPL, BLIS, and OpenBLAS,
while on the X86 platform, we compare it with MKL,
BLIS, and OpenBLAS. These libraries are known to de-
liver high performance in large-scale matrix multiplication,
with Intel MKL library supporting the TSMM interface
(gemm_compute) and BLIS having special optimization
for tall-and-skinny matrices. Our tests compare the perfor-
mance of two cases where matrix A and matrix B are tall-
and-skinny matrices, respectively. In the case where matrix
A is tall-and-skinny, we assign its dimensions to be {4, 8,
..., 80} x 10240, while matrix B is set to have dimensions
10240 x 10240. Conversely, if matrix B is tall-and-skinny,
we set its dimensions to be 10240x {4, 8, .., 80}, and
assign the dimensions of matrix A to be 10240 x 10240. In
addition to the single-thread test, this article also compares
the performance between 48 threads on the ARM platform
and 16 threads on the X86 platform.

Figure 15 and Figure 16 present the results of TSMM tests
in NN mode for double precision real numbers in single
and multi-threaded mode. The performance comparison
leads to the following conclusions: 1) 'GEMM outperforms
ARMPL, BLIS, and OpenBLAS on both ARM and X86
platforms. Specifically, on the ARM platform, for DTSMM,
IrGEMM provides up to 2.9x, 3.0, 1.1x speedups com-
pared to ARMPL, BLIS, and OpenBLAS, respectively, and
in the 48-thread test, it provides up to 9.6x, 9.5x, 4.5%
performance improvements, respectively. On the X86 plat-

form, compared to MKL, BLIS, and OPENBLAS, it provides
up to 2.0x, 2.0x, 1.9x speedups, and in tests with 16
threads, up to 2.6, 2.9x, 3.4x performance improvements,
respectively. 2) While the traditional implementation also
exhibits higher performance than IrGEMM in tests against
the ARM platform, IrGEMM still has a performance ad-
vantage. In contrast, '[GEMM shows a considerable perfor-
mance advantage in the test on the X86 platform, indicating
the effectiveness of the code generation method and input-
aware tiling algorithm designed in this paper in handling
the TSMM problem. 3) Although the implementation of this
paper does not show a significant advantage over other li-
braries in single-core tests based on ARMv8 CPUs, I'GEMM
shows a considerable performance advantage in the multi-
threaded test. We argue that this is because other libraries
are not optimized for TSMM for multi-threading. Moreover,
BLIS on the X86 platform demonstrates strong performance
in the case of matrix A as a high skinny matrix and poor
performance in the case of matrix B as a high thin matrix.
We believe the blocking process of BLIS may not explicitly
consider whether matrix A or B is tall-and-skinny, leading
to the cache not being fully utilized.

7 CONCLUSION

This paper presents IrGEMM, an input-aware tuning frame-
work for irregular GEMM based on ARMv8 and X86 CPUs.
It includes the install-time stage and the run-time phase. In
the install-time stage, we focus on designing and optimizing
the computing kernel based on the computer architecture’s
characteristics. We proposed a code generation method to
efficiently generate computational kernels using kernel com-
putation templates and instruction mapping. In the run-time
stage, this paper proposes an input-aware tiling algorithm
to achieve a comprehensive automatic tuning process. For
multi-threaded optimization for batch GEMM, the paper
divides the large matrix group into task groups, dynami-
cally assigning them to threads through the dynamic map-

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16
DTSMM_ARMv8 DTSMM_ARMv8 55 DTSMM_X86 55 DTSMM_X86
10 10 50 50 [[—— IFGEMM
of g of | —— Intel MKL PE ane
— 4
of] o p /\/\/\,.\. o L A
o 7F 1 o7l 0 5 — 0 4o | OpenBlAS /]
o o o o
S sl 1 G s} G 30 S 30]
Ts] s s I
o ol 1 o . A \/‘\ R o 25 s 9
——1rGEMM 20 —— IrGEMM 20
3 l—— ARMPL |1 3F —— IrGEMM 15 —— Intel MKL 15
2 ——BLIS 1 2 T ARMPL 10 ——BLIS 10}/
L] F — |—— OpenBLAS
' |—— OpenBLAS ! —— OpenBLAS ; > .
4 8 1216 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 4 8 1216 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 4 8 1216 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 4 8 1216 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
length of M length of N length of M length of N

(a) Ais a tall-and-skinny matrix ~ (b) B is a tall-and-skinny matrix

(c) A is a tall-and-skinny matrix

(d) Bis a tall-and-skinny matrix

Fig. 15. Performance of the single-threaded IrGEMM TSMM compared with ARMPL, BLIS, and OpenBLAS based on ARMv8 architecture, and
compared with Intel MKL, BLIS, and OpenBLAS based on X86 architecture.

v v »
400 DTSMM_ARMv8 400 DTSMM_ARMv8 600 DTSMM_X86 600 DTSMM_X86
——IrGEMM [—— IrGEMM ——IrGEMM —— IrGEMM
—— ARMPL 301 ARMPL L1 00 f——Intel MKL T o0 Intel MKL /]
300 [{—— BLIS /’“/ 300 [|——BLIS ——BLIS ——BLIS /\/ u
—— OpenBLAS I W5 [OpenBLAS /-’\ 400 |—— OpenBLAS 400 ||—— OpenBLAS //
4 - <7 % - 4 {
%200 //\// 4 S200f 300 3
s & z z
5 //‘ 150} A B0l 5
100 | ./'/\/./-—""'_/ 100
SN S S [
sl 100

0
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
length of N

0
4 8 1216 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
length of M

(a) A is a tall-and-skinny matrix (b) B is a tall-and-skinny matrix

(c) A is a tall-and-skinny matrix

0
4 8 1216 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

0
48 1216 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

length of M length of N

(d) Bis a tall-and-skinny matrix

Fig. 16. Performance of the multi-threaded IrGEMM TSMM compared with ARMPL, BLIS, and OpenBLAS based on ARMv8 architecture, and
compared with Intel MKL, BLIS, and OpenBLAS based on X86 architecture.

ping between threads and tasks. The experimental results
demonstrate that IrGEMM is highly competitive on both
ARMvS and X86 architectures, which signifies a notable
progression in the area of irregular GEMM.

In the future, we aims to optimize other BLAS routines
and investigate and extend the approach to state-of-the-art
CPUs and GPUs.

ACKNOWLEDGMENTS

The authors would like to thank all the reviewers for their
insightful and valuable comments and suggestions. This
work is supported by National Natural Science Foundation
of China under Grant No. 61972376, No. 62072431, No.
62032023.

REFERENCES

[1] A. Khodayari, A. R. Zomorrodi, J. C. Liao, and C. D. Maranas,
“A kinetic model of escherichia coli core metabolism satisfying
multiple sets of mutant flux data,” Metabolic engineering, vol. 25,
pp- 50-62, 2014.

S. N. Yeralan, T. A. Davis, W. M. Sid-Lakhdar, and S. Ranka, “Al-
gorithm 980: Sparse qr factorization on the gpu,” ACM Transactions
on Mathematical Software (TOMS), vol. 44, no. 2, pp. 1-29, 2017.

A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl,
J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, et al., “High-
performance tensor contractions for gpus,” Procedia Computer Sci-
ence, vol. 80, pp. 108-118, 2016.

J. Molero, E. Garzon, 1. Garcia, E. Quintana-Orti, and A. Plaza,
“Poster: A batched cholesky solver for local rx anomaly detection
on gpus,” PUMPS: Moscow, Russia, 2013.

A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst, “Libxsmm:
accelerating small matrix multiplications by runtime code genera-
tion,” in SC’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, no. 1,
pp- 981-991, IEEE, 2016.

“Arm performance libraries,” [n.d.].

“Intel oneapi math kernel library,” [n.d.].

(2]

(3]

(4]

(5]

[6]
(7]

(8]
[9]
(10]

(1]

[12]

[13]

[14]

(15]

[16]

[17]

(18]

F. G. Van Zee and R. A. Van De Geijn, “Blis: A framework
for rapidly instantiating blas functionality,” ACM Transactions on
Mathematical Software (TOMS), vol. 41, no. 3, pp. 1-33, 2015.
“Openblas:an optimized blas library,” [n.d.].

J. Yao, B. Shi, C. Xiang, H. Jia, C. Li, H. Cao, and Y. Zhang, “laat:
A input-aware adaptive tuning framework for small gemm,” in
2021 IEEE 27th International Conference on Parallel and Distributed
Systems (ICPADS), pp. 899-906, IEEE, 2021.

C. Wei, H. Jia, Y. Zhang, L. Xu, and J. Qi, “Iatf: An input-aware
tuning framework for compact blas based on armv8 cpus,” in
Proceedings of the 51st International Conference on Parallel Process-
ing, ICPP '22, (New York, NY, USA), Association for Computing
Machinery, 2023.

C. Li, H. Jia, H. Cao, J. Yao, B. Shi, C. Xiang, J. Sun, P. Lu, and
Y. Zhang, “Autotsmm: An auto-tuning framework for building
high-performance tall-and-skinny matrix-matrix multiplication on
cpus,” in 2021 IEEE Intl Conf on Parallel & Distributed Processing
with Applications, Big Data & Cloud Computing, Sustainable Comput-
ing & Communications, Social Computing & Networking (ISPA/BD-
Cloud/SocialCom/SustainCom), pp. 159-166, IEEE, 2021.

C. Wei, H. Jia, Y. Zhang, K. Li, and L. Wang, “Lbbgemm: A load-
balanced batch gemm framework on arm cpus,” in 2022 IEEE 24rd
Int Conf on High Performance Computing & Communications, pp. 1-8,
2022.

K. Goto and R. A. v. d. Geijn, “Anatomy of high-performance
matrix multiplication,” ACM Transactions on Mathematical Software
(TOMS), vol. 34, no. 3, pp. 1-25, 2008.

G. Frison, D. Kouzoupis, T. Sartor, A. Zanelli, and M. Diehl, “Blas-
feo: Basic linear algebra subroutines for embedded optimization,”
ACM Transactions on Mathematical Software (TOMS), vol. 44, no. 4,
pp- 1-30, 2018.

K. Kim, T. B. Costa, M. Deveci, A. M. Bradley, S. D. Hammond,
M. E. Guney, S. Knepper, S. Story, and S. Rajamanickam, “Design-
ing vector-friendly compact blas and lapack kernels,” in Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1-12, 2017.

W. Yang,]J. Fang, D. Dong, X. Su, and Z. Wang, “Libshalom:
optimizing small and irregular-shaped matrix multiplications on
armv8 multi-cores,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
pp. 1-14, 2021.

Z. Xianyi, W. Qian, and Z. Yunquan, “Model-driven level 3 blas
performance optimization on loongson 3a processor,” in 2012

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

IEEE 18th international conference on parallel and distributed systems,
pp- 684-691, IEEE, 2012.

K. Goto and R. Van De Geijn, “High-performance implementation
of the level-3 blas,” ACM Transactions on Mathematical Software
(TOMS), vol. 35, no. 1, pp. 1-14, 2008.

A. Abdelfattah, T. Costa,]. Dongarra, M. Gates, A. Haidar, S. Ham-
marling, N. J. Higham, J. Kurzak, P. Luszczek, S. Tomov, ef al.,
“A set of batched basic linear algebra subprograms and lapack
routines,” ACM Transactions on Mathematical Software (TOMS),
vol. 47, no. 3, pp. 1-23, 2021.

P. Valero-Lara, I. Martinez-Perez, S. Mateo, R. Sirvent, V. Beltran,
X. Martorell, and J. Labarta, “Variable batched dgemm,” in 2018
26th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP), pp. 363-367, IEEE, 2018.

A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra, “Perfor-
mance, design, and autotuning of batched gemm for gpus,” in
International Conference on High Performance Computing, pp. 21-38,
Springer, 2016.

R. Wang, Z. Yang, H. Xu, and L. Lu, “A high-performance batched
matrix multiplication framework for gpus under unbalanced in-
put distribution,” The Journal of Supercomputing, vol. 78, no. 2,
pp- 1741-1758, 2022.

E. Georganas, S. Avancha, K. Banerjee, D. Kalamkar, G. Henry,
H. Pabst, and A. Heinecke, “Anatomy of high-performance deep
learning convolutions on simd architectures,” in SC18: Interna-
tional Conference for High Performance Computing, Networking, Stor-
age and Analysis, pp. 830-841, IEEE, 2018.

J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah, D. Khudia,
J. Law, P. Malani, A. Malevich, S. Nadathur, et al., “Deep learn-
ing inference in facebook data centers: Characterization, perfor-
mance optimizations and hardware implications,” arXiv preprint
arXiv:1811.09886, 2018.

W. Cao, X. Wang, Z. Ming, and J. Gao, “A review on neural net-
works with random weights,” Neurocomputing, vol. 275, pp. 278—
287,2018.

M. Anthony and P. Bartlett, Neural network learning: Theoretical
foundations. cambridge university press, 1999.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “{TensorFlow}: a system
for {Large-Scale} machine learning,” in 12th USENIX symposium
on operating systems design and implementation (OSDI 16), pp. 265
283, 2016.

J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah, D. Khudia,
J. Law, P. Malani, A. Malevich, S. Nadathur, et al., “Deep learn-
ing inference in facebook data centers: Characterization, perfor-
mance optimizations and hardware implications,” arXiv preprint
arXiv:1811.09886, 2018.

H. Lan, J. Meng, C. Hundt, B. Schmidt, M. Deng, X. Wang, W. Liu,
Y. Qiao, and S. Feng, “Feathercnn: Fast inference computation with
tensorgemm on arm architectures,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 3, pp. 580-594, 2019.

M. Monaci and A. G. dos Santos, “Minimum tiling of a rectangle
by squares,” Annals of Operations Research, vol. 271, pp. 831-851,
2018.

F. Wang, H. Jiang, K. Zuo, X. Su, J. Xue, and C. Yang, “Design
and implementation of a highly efficient dgemm for 64-bit armv8
multi-core processors,” in 2015 44th International Conference on
Parallel Processing, pp. 200-209, 2015.

Q. Han, Y. Hu, F. Yu, H. Yang, B. Liu, P. Hu, R. Gong, Y. Wang,
R. Wang, Z. Luan, et al., “Extremely low-bit convolution op-
timization for quantized neural network on modern computer
architectures,” in Proceedings of the 49th International Conference on
Parallel Processing, pp. 1-12, 2020.

T. M. Low, E D. Igual, T. M. Smith, and E. S. Quintana-Orti,
“Analytical modeling is enough for high-performance blis,” ACM
Transactions on Mathematical Software (TOMS), vol. 43, no. 2, pp. 1-
18, 2016.

Z. Jia, A. Zlateski, F. Durand, and K. Li, “Optimizing n-
dimensional, winograd-based convolution for manycore cpus,” in
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 109-123, 2018.

17

Cunyang Wei received the master’s degree from
the Institute of Computing Technology, Univer-
sity of Chinese Academy of Sciences, Beijing,
China, in 2023. His main research interest is
high performance computing.

Haipeng Jia received the PhD degree from the
Ocean University of China, Qingdao, China, in
2012. He was a visiting PhD student with the
Institute of Software, Chinese Academy of Sci-
ences from 2010 to 2012. He is currently an
associate professor with the State Key Labora-
tory of Processors, Institute of Computing Tech-
nology, Chinese Academy of Sciences. His re-
search interests include heterogeneous comput-
ing and manycore parallel programming method.

Yunquan Zhang (Senior Member, |IEEE) re-
ceived the Ph.D. degree in computer software
and theory from the Institute of Software, Chi-
nese Academy of Sciences, Beijing, China, in
2000. He is a Full Professor of computer sci-
ence with the Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China.
His research interests include high-performance
parallel computing, with particular emphasis on
large scale parallel computation and program-
ming models, high-performance parallel numer-

ical algorithms, and performance modeling and evaluation for parallel

Jianyu Yao received the master's degree from
the Institute of Computing Technology, Univer-
sity of Chinese Academy of Sciences, Beijing,
China, in 2022. His main research interest is
high performance computing.

Chendi Li received the master’s degree from the
Institute of Computing Technology, University of
Chinese Academy of Sciences, Beijing, China,
in 2022. He is currently working toward the PhD
degree with the The University of Utah. His main
research interest is high performance comput-
ing.

Wenxuan Cao is a current master’s student at
the Institute of Computing Technology, Univer-
sity of Chinese Academy of Sciences, Beijing,
China. His research is in high performance com-
puting and he has participated in projects related
to architecture and compilers.

